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HELPER PHAGE CAPSID SIZE REDIRECTION BY STAPHYLOCOCCAL 

 PATHOGENICITY ISLAND SaPI1 INVOLVES INTERNAL SCAFFOLDING PROTEINS  

by 
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Doctor of Philosophy at Virginia Commonwealth University.  
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Staphylococcus aureus is one of the leading causes of nosocomial and community 

acquired infections. Many of the virulence factors are encoded on staphylococcal mobile 

genetic elements. Members of the SaPI family of S. aureus mobile elements encode 

superantigens and are mobilized at high frequency by specific helper bacteriophages. 

One remarkable feature of helper phage exploitation by SaPIs is remodeling of the 

normal T=7 bacteriophage capsid to produce smaller T=4 phage-like particles. These 
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particles, composed entirely of helper phage proteins, can accommodate the smaller 

SaPI genome while excluding that of a complete helper phage. This study was designed 

to understand the mechanism of capsid size redirection and high frequency mobilization 

of SaPIs. A multipronged approach employing cryo-EM analysis, protein profile 

comparison and genetic analysis was used to study the capsid size redirection. Two 

proteins encoded by the prototype element SaPI1, gp6 and gp7, have been identified in 

SaPI1 procapsids but not in mature SaPI1 particles. These proteins are sufficient and 

required to direct small capsid formation, which involves alteration of an internal 

scaffold. While many phages use internal scaffolding proteins, the involvement of an 

internal scaffold in capsid size redirection is novel. 
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Chapter 1 

Introduction 
 

 

S. aureus: 
Taxonomic classification: 

Domain: Bacteria  
Kingdom: Eubacteria  
Phylum: Firmicutes  
Class: Bacilli  
Order: Bacillales  
Family: Staphylococcaceae  
Genus: Staphylococcus  
Species: Staphylococcus aureus 
 

Staphylococcus aureus is a Gram positive facultative anaerobe that grows in 

golden yellow grape-like clusters. They form grape-like clusters because of their ability 

to divide in two planes in contrast to streptococci which can divide in a single plane to 

form chains. The distinct golden yellow color is due to a membrane bound triterpenoid 

carotenoid pigment Staphyloxanthin. This pigment is an anti-oxidant that plays a role in 

the fitness of the species by neutralizing reactive oxygen species (ROS) generated by 

the host immune system (Clauditz et al., 2006). S. aureus is catalase positive and can 

convert hydrogen peroxide to water and oxygen. It is also coagulase positive and 

oxidase negative. All these characteristics help in readily identifying and differentiating 

these microbes. 
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Epidemiology of Staphylococcus aureus 

Approximately 20-25% of humans are persistent carriers, 55-60% are intermittent 

carriers and 20% are non-carriers (Vandenberg et al., 1999). Nearly all humans suffer 

from staphylococcal infections at some point in their life time. Although most of the time 

S. aureus causes minor infections ranging from pimples, boils, conjunctivitis and 

uncomplicated wound infections, it is a leading cause of community acquired 

pneumonia and can also cause sepsis, toxic shock syndrome, osteomyelitis, meningitis, 

and fulminant illnesses such as acute bacterial endocarditis (ABE) in previously healthy 

individuals (Foster,1996; Lowy,1998; Kim et al., 2003; Lin et al., 2010; Naughton et al., 

2011; Yamada et al., 2011). 

Patients in a hospital setting are at risk from many species of microbes and 

historically S. aureus has always been considered one of the most important. One 

Boston study in the year 1941 found that 82% of the 122 patients treated for S. aureus 

bacteremia died because of their infection (Skinner et al., 1941). Though one could 

argue that during that period even simple surgical procedures were often life 

threatening, patients in the modern hospital environment are still at risk from S. aureus 

infections due to more adventurous surgeries in an aging population and the prevalence 

of antibiotic resistant S. aureus. During the 1950s, a S. aureus strain known as phage 

type 80/81 emerged. It was resistant to penicillin and caused serious nosocomial and 

community-associated infections worldwide. This strain was largely eliminated after the 

introduction of methicillin and its derivatives in 1959 (Varga et al., 1961). However, 

within two years, emergence of methicillin resistant S. aureus (MRSA) was reported and 

since then it has spread worldwide. S. aureus is the leading cause of hospital-
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associated infections and most of them are caused by MRSA. The mortality rates 

associated with invasive MRSA are as high as 20% (Cosgrove et al., 2003). Outside the 

hospital setting, there has been a rapid recent emergence of the more virulent 

community-associated MRSA (CA-MRSA) (Deleo et al., 2010) and it is surprising that 

these antibiotic resistant strains emerged in a niche that does not have a high selective 

pressure of antibiotics. CA-MRSA was first reported in 1990 in Western Australia. In the 

US, the first documented cases of CA-MRSA were reported in 1999. However, 

retrospective studies have shown occurrence of MRSA as early as 1993 (Witte et al., 

1997). Most cases of CA-MRSA in the US are caused by strain USA300, which carries 

SCCmectypeIV, PVL, PSM-α and enterotoxins Q and K and USA400 (MW2), which is a 

highly virulent CA-MRSA strain (Baba et al., 2002). USA 400 contains mec and blaZ 

antibiotic resistance genes, the PVL operon (Voyich et al., 2006; Kernodle,2007), and 

16 unique superantigen genes that include 11 exotoxin genes and five enterotoxin 

genes (Gordon et al., 2008).USA400 also contains a novel gene cluster which is called 

“bacteriocin of S. aureus” (bsa). The bsa cluster encodes a potential bacteriocin, or 

lantibiotic agent, that has been implicated in helping USA400 compete with other 

colonizing flora and increase the chance of infection with this strain (Baba et al., 2002; 

Gordon et al., 2008). Other community associated MRSA strains that are prevalent in 

US are USA500 and USA1000. USA100 and USA200 are more abundant in health care 

associated infections. MRSA is not only confined to humans but is also a growing 

concern in veterinary medicine and animal agriculture. Many animal species, including 

dogs, cats, rabbits, horses, cattle, pigs, poultry, and exotic species are healthy carriers 

of MRSA as well as infected with it. The true scope of MRSA in animals is not properly 
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understood at the moment but there appears to be a correlation between MRSA in 

humans and in animals. 

Glycopeptide resistant S. aureus 

There has been an emergence of S. aureus strains that are resistant to other 

antibiotics as well. Glycopeptides, including vancomycin and also teicoplanin, have 

been used to treat MRSA infections. Vancomycin was first introduced in 1958 

(Fairbrother et al., 1956; Schneierson et al., 1958; Dutton et al., 1959; Wilson,1959; 

Louria et al., 1961; Kirby,1963). It was thought that vancomycin resistance was unlikely 

to occur in a clinical setting because resistance to this antibiotic was difficult to induce in 

vitro and almost forty years had passed without an occurrence of a vancomycin 

resistant strain. However, this hypothesis proved to be incorrect because vancomycin-

intermediate S. aureus (VISA) strains were isolated in Japan in 1996. VISA strains were 

then isolated in many other countries including the USA. Furthermore, to make matters 

worse, the first fully vancomycin-resistant S. aureus (VRSA) clinical isolates in the US 

were found in 2002 (Centers for Disease Control and Prevention (CDC), 2002). Four 

clinical VRSA isolates have been reported thus far, all in the USA (Zhu et al., 2008). In 

addition, these VRSA isolates have a different and potentially much more efficient 

mechanism for conferring resistance than VISA strains. VRSA strains are thought to 

acquire additional resistance by conjugal transfer of plasmids containing the vanA 

operon from vancomycin-resistant Enterococcus faecalis. Whereas resistance in VISA 

strains is thought to occur solely because of synthesis of peptidoglycan in larger 

quantity, resistance in VRSA strains is caused by alteration of the cell wall terminal 
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peptide D-alanyl-D-alanine to D-alanyl-D-lactate. This prevents the inhibition of cell-wall 

synthesis by vancomycin.  

The spread of antibiotic resistant S. aureus strains is just the tip of an iceberg 

because of the versatility of this microbe owing to the vast array of its virulence factors. 

These virulence factors have aided this microorganism to adapt in various environments 

and evade the host immune mechanisms, and thereby have made it a pestilent 

organism. Stated below is a brief summary of the important virulence factors that are 

carried by S. aureus. 

Staphylococcal arsenal of virulence factors 

S. aureus colonizes animals and is common in mammals. The primary niche of 

this organism in humans is vestibulum nasi but it is occasionally also found in the 

armpit, groin, digestive and vaginal tract (Smith et al., 1982). The ability of S. aureus to 

survive in diverse environments is ascribed to its capacity to modulate behavior in 

response to changes in its environment. It can sense oxygen reduction through the 

activity of SrrAB and can switch from a respiratory pathway to a fermentative pathway 

using this two component system (Throup et al., 2001; Yarwood et al., 2001). S. aureus 

has evolved to sense intracellular concentrations of various metal ions through 

metalloregulatory proteins like Fur, Zur and MntR (Horsburgh et al., 2001; Lindsay et al., 

2001). It also overcomes nitrosative and oxidative stress via the SrrAB and Fur regulons 

(Richardson et al., 2006).  

S. aureus has evolved complex mechanisms for causing infection in different 

environments. Production of virulence factors is necessary to establish infection. These 

virulence factors are controlled by two broad categories of regulatory systems, namely 
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the two-component signal transduction system and global transcription regulation. The 

best studied two-component regulatory system in S. aureus is the agr (accessory gene 

regulatory) locus. It regulates more than 70 genes, including 23 virulence factors 

(Ziebandt et al., 2004). The sae (staphylococcal accessory element) locus encodes yet 

another two-component system SaeRS, which is involved in regulation of many 

virulence factors. SaeR positively regulates , , and -hemolysins (Goerke et al., 2005) 

and negatively regulates protein A (Giraudo et al., 1997). Inactivation of the sae locus 

has been demonstrated to decrease virulence in animal infection models (Novick, 2003; 

Goerke et al., 2005). Additionally, several global transcriptional regulators also play a 

role in regulation of virulence factors (Cheung et al., 2008). SarA (Staphylococcal 

accessory regulator) upregulates expression of FnBPs (fibronectin binding proteins) and 

α-toxin and decreases expression of protein A and proteases. Apart from playing a role 

in the overall general stress response, the alternate sigma factor σB, plays a central role 

in cellular physiology and transcription of virulence associated genes. σB regulates at 

least 30 virulence genes, including sarA.  

There are three essential steps involved in establishing an infection: (1) cell 

surface binding, (2) host immune system evasion, and (3) dissemination and tissue 

invasion. Virulence factors are hence classified according to their role in the infection 

process. Some of these virulence factors are bound to the cell surface while others are 

secreted into the extracellular medium. Cell wall associated factors include 

exopolysaccharides, cell wall components such as teichoic acid and peptidoglycans, 

and two broad categories of adhesins (Clarke et al., 2006), namely the MSCRAMMS 

(microbial surface components recognizing adhesive matrix molecules) and SERAMS 
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(secreted expanded-repertoire adhesive molecules). MSCRAMMS are cell wall 

associated proteins that are covalently linked to peptidoglycan and aid the bacterium in 

attachment to extracellular matrixes such as collagen and fibronectin. They include 

collagen adhesion (Cna), fibronectin binding proteins (FnBPs), clumping factors A and B 

(ClfA and ClfB) and protein A (Spa). Fibronectin binding proteins, FnbpA and FnbpB, 

bind to fibronectin and have been shown to be involved in invasion in some cell lines. 

Once FnbPs have bound to fibronectin, they also bind to fibronectin receptor-integrin, 

thus facilitating uptake into the host cell. Clumping factors, ClfA and ClfB, bind to 

fibrinogen and type I cytokeratin-10, which leads to platelet aggregation. ClfA also 

protects the bacteria from phagocytosis by macrophages. Protein A interferes with the 

host immune response by causing B cell sensitization (Bekeredjian-Ding et al., 2007) 

and binding to antibodies such as IgG, IgA and IgE(O'Brien et al., 2002). SERAMs are 

secreted molecules that include extracellular fibrinogen binding proteins (Efb), 

extracellular matrix proteins (Emp) and extracellular adhesive proteins (Eap). These 

proteins not only help in cell adherence (Haggar et al., 2003; Hauck et al., 2006), but 

also modulate host immune response (Harraghy et al., 2003). 

Another important class of virulence factors is the exopolysaccharides. There are 

two important types of exopolysaccharides in S. aureus, namely the PIA 

(polysaccharide intercellular adhesions) and the capsular polysaccharides. Capsular 

polysaccharides protect the bacteria from the host immune system by interfering with 

phagocytosis (Peterson et al., 1978). PIA is a biofilm exopolysaccharide made up of 

poly-N-acetyl-glucosamine and plays a role in biofilm formation. 
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S. aureus also secretes a variety of extracellular proteins. Most important of these are: 

(1) membrane-active toxins, (2) pyrogenic toxin superantigens (PTSags) and (3) 

exfoliative toxins (ETs) (Bohach, 2006). The cytolytic toxins include α-hemolysin, β-

hemolysin, γ-hemolysin, δ-hemolysin, leukocidin and Panton-Valentine-leukocidin. 

These membrane-active toxins damage the cytoplasmic membrane of the eukaryotic 

host cells thereby causing osmotic lysis of the cells (Foster, 2005). 

Membrane-active staphylococcal toxins 

α -hemolysin, encoded by the hla gene, is secreted as a monomer of 293 amino 

acids and upon binding to the eukaryotic membrane oligomerizes to form a homo-

heptameric β-barrel shaped transmembrane pore (Song et al., 1996). It is known to 

affect several cell types including erythrocytes, mononuclear immune cells, epithelial 

and endothelial cells and platelets (Menestrina et al., 2001; Bohach, 2006). β-toxin is 

encoded by the hlb gene and shows species-dependent activity. It can lyse sheep, cow 

and goat but not rabbit erythrocytes. β-toxin is a neutral sphingomyelin 

phosphodiesterase or sphingomyelinase (SMase). This enzyme is a hydrolase that is 

involved in hydrolyzing sphingolipid to phosphocholine and ceramide and hence the 

degree of erythrocyte sensitivity depends upon the sphingomyelin content of the cell 

membrane. β-toxin in humans has been shown to kill proliferating human lymphocytes 

(Huseby et al., 2007). With the help of in vitro studies, β-toxin has also been shown to 

covalently cross-link to itself in the presence of DNA to form an insoluble nucleoprotein 

matrix and to stimulate biofilm formation in a rabbit model (Huseby et al., 2010). The δ-

hemolysin is a 26-amino-acid peptide that is capable of causing membrane damage in a 

variety of mammalian cells. This small peptide is encoded by the hld gene which is 
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embedded in the agr effector RNAIII. This small RNA has been shown to play a 

regulatory role in the accessory gene regulator (agr) system that controls the production 

of cell-associated and secreted virulence factors. This toxin acts synergistically with the 

sphingomyelinase β-toxin to enable the phagosomal escape of staphylococci in human 

epithelial as well as in endothelial cells (Giese et al., 2011). 

S. aureus also produces two types of bicomponent toxins, namely γ-hemolysin 

and Panton-Valentine (PV) leukocidin. Each of these toxins is made as two non-

associated secreted proteins called the S and F components (the classification is based 

on slow- and fast-eluting components in an ion-exchange column) (Cooney et al., 1993; 

Colin et al., 1994). Almost all S. aureus strains produce γ-hemolysin, while PV 

leukocidin is produced by 2 to 3% of the strains. The S and F components of the 

classical PVL are LukS-PV and LukF-PV (Prevost et al., 1995a; Bohach, 2006). 

However, in some strains LukS-PV is replaced by LukM-PV. The S and F components 

of gamma toxin are HlgA and HlgB, respectively. The PVL structural genes were shown 

to be present in three staphylococcal temperate phages, namely ΦPVL, ΦSLT and 

ΦPV83 (Kaneko et al., 1998; Zou et al., 2000; Narita et al., 2001). PVL oligomerizes on 

the eukaryotic membrane to form a hetero-octameric trans-membrane pore (Aman et 

al., 2010). It is nonhemolytic but can stimulate and lyse neutrophils and macrophages 

(Prevost et al., 1995b; Bohach, 2006). Gamma toxin is strongly hemolytic but is 

remarkably less leukotoxic (Bohach, 2006). 

Staphylococcal pyrogenic toxin superantigens (PTASags) 

The PTSAgs are a group of exotoxins secreted by S. aureus. These include toxic 

shock syndrome toxin-1 (TSST-1) and other staphylococcal enterotoxins (SEs A-E, G-J, 
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and the staphylococcal enterotoxin-like (enterotoxicity unproven) toxins (SEl) K-R and 

U, and the recently identified SEl-U2 and SEl-V) (Fraser et al., 2008). Most 

staphylococcal Sags are encoded by accessory genetic elements such as prophages, 

transposons, plasmids, and pathogenicity islands. For example, the pathogenicity island 

νSaβ of staphylococcal strain N315 carries the genes for SEG, SEL, SEM, SEN, and 

SEO. The ϕSa3 prophage of strain MW2 carries genes for SEA, SEG2, and SEK2. 

TSST-1 is encoded by tstH (where H refers to human isolate), which is present on the 

bacterial chromosome within pathogenicity islands SaPI1 and SaPI2 (Blomster-

Hautamaa et al., 1986; Lindsay et al., 1998). 

Not all Sags are enterotoxic and therefore a new nomenclature was introduced in 

order to distinguish those that were enterotoxic from those that remained unconfirmed 

(SEls) (Lina et al., 2004). There is remarkable sequence variation among members of 

the staphylococcal superantigen family, with the most distant members, SEB and SEK, 

having only 15% amino acid identity. TSST-1 is unique because it is able to cross 

mucosal surfaces (Bohach, 2006) and is the only superantigen known to reactivate 

bacterial cell wall-induced arthritis (Schwab et al., 1993). The staphylococcal PTSAgs 

cause several acute or chronic human diseases (Kotzin et al., 1993; Leung et al., 1998). 

For example, TSST-1 has been found in the kidneys of 18% of victims of sudden infant 

death syndrome (Newbould et al., 1989). TSST-1-producing S. aureus has been 

isolated from over 60% of patients with Kawasaki syndrome (Leung et al., 1993; Abinun 

et al., 1994; Curtis et al., 1994; Nishiyori et al., 1994). Kawasaki syndrome is the major 

cause of acquired heart disease among children in the United States. Two human 

diseases that are definitely caused by staphylococcal PTSAgs are staphylococcal food 
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poisoning (SFP) and staphylococcal toxic shock syndrome (TSS). Contamination of 

food with staphylococcal PTSags causes gastroenteritis that is manifested clinically as 

emesis with or without diarrhea (Dinges et al., 2000). Signs of systemic toxicity, such as 

fever and hypotension, are rarely observed in cases of SFP. Furthermore, SFP is a self-

limited condition that typically resolves within 24 to 48 h of onset. Staphylococcal TSS 

occurs in either of the two general forms; menstrual or non-menstrual. Menstrual TSS 

usually occurs in young women whose mucosal layers of the vagina are colonized by 

TSST-1 positive S. aureus. Interestingly most menstrual staphylococcal TSS strains 

were found to be clonal and contained a pathogenicity island, SaPI2 (Subedi et al., 

2007). The non-menstrual TSS results from infections elsewhere in the body and may 

be caused by TSST-1, SEB or SEC (Bohach et al., 1990; Bohach, 2006). TSST-1 is 

translated as a precursor protein with 234 amino acids and secreted after cleavage of a 

40-amino-acid signal sequence located at its N-terminus. The mature protein is a single 

polypeptide chain with a molecular weight of 22 kDa and contains a high percentage of 

hydrophobic amino acids, yet it is highly soluble in water. The toxin is resistant to heat 

and proteolysis. Staphylococcal Sags are potent T cell mitogens but exhibit different 

preferences for MHC class II alleles and also produce distinct TCR Vβ profiles (Fraser 

et al., 2008). 

Staphylococcal mobile genetic elements 

 

Mobile genetic elements (MGE) are discrete DNA segments that encode 

enzymes that mediate the movement of DNA within genomes (intracellular mobility) or 

between bacterial cells (intercellular mobility) (Frost et al., 2005). Staphylococcal MGEs 

include plasmids, transposons (Tn), insertion sequences (IS), bacteriophages, phage 
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related chromosomal islands, and staphylococcal chromosomal cassettes (SCC), and 

account for almost 20% of the staphylococcal genome. Staphylococcal MGEs often 

encode virulence factors or antibiotic resistance genes that confer an advantage to S. 

aureus to adapt and disseminate in its host. In particular, Panton-Valentine leukocidin 

(PVL), chemotaxis inhibitory protein (CHIP), staphylokinase (Sak), exfoliative toxin 

(Eta), staphylococcal complementary inhibitor (SCIN) and SEA are encoded by various 

staphylococcal temperate phages. Superantigens including Toxic shock syndrome toxin 

(TSST1) and various enterotoxins encoded by SaPIs and resistance to β–lactams 

including methicillin and oxacillin, tetracycline, erythromycin, and vancomycin, have 

made S. aureus a major pathogen of the developed world. 

Pathogenicity islands 

Pathogenicity islands are discrete segments of DNA that encode one or more 

virulence factors and most often have a different G+C content than the rest of the 

chromosome indicating that they have been acquired by horizontal transfer (Hacker et 

al., 1997; Schmidt et al., 2004a). They usually range from 10 Kb to 200 Kb in size and 

are often located adjacent to tRNA genes, which presumably act as targets for 

integration because of their conserved sequences across genera and their abundance 

in any given species. Pathogenicity islands are flanked by direct repeats with a perfect 

or nearly perfect repetition of DNA sequence. Most of the pathogenicity islands across 

genera seem to have lost mobility due to loss of functional mobility genes while the 

ones that still retain mobility use either transduction or conjugation for horizontal 

transfer. Pathogenicity islands are ubiquitous in S. aureus and almost all S. aureus 

clinical isolates sequenced thus far contain one or more.  
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Staphylococcal superantigen pathogenicity islands (SaPIs) 

 

One closely related family of pathogenicity islands found in S. aureus has been 

named Superantigen Pathogenicity Islands (SaPIs). The genomic architecture of these 

pathogenicity islands is strikingly phage-like and modular. One of the most important 

characteristics of these pathogenicity islands is that they depend on helper phages for 

their mobilization. The frequency at which they are transduced, known as high 

frequency transduction (hft), is about 1000 times higher than that observed for 

generalized transduction by these helper phages. Their dependence on helper phages 

for mobilization has prompted them to be designated as Phage-related chromosomal 

islands (PRCIs) (Novick et al., 2010). SaPI1 is a prototypical member of PRCIs and 

encodes TSST1 and two other enterotoxins, namely EntQ and EntK. SaPI1 can excise 

and circularize in the presence of Φ13 and phage 80α but is only mobilized at a high 

frequency by phage 80α. SaPI1 always integrates at a single chromosomal site (attc) 

near the tyrB locus and is always found in the same orientation (Lindsay et al., 1998).  

Genomic architecture of SaPIs 

All SaPIs share a strikingly similar genomic architecture and contain a conserved 

core of homologous genes. A comparison between two closely related SaPIs, 

SaPIbov1, which has been extensively studied using genetic experiments, and SaPI1 is 

shown in Fig1. The first module contains genes that are involved in integration and 

transcriptional regulation. The SaPI integrase homolog is at the left end of the genome 

and located adjacent to int are two divergent promoters that regulate expression of two 

putative transcriptional regulatory proteins, Stl and Str. Both of these proteins have 

predicted helix-turn-helix motifs suggesting that they can bind to the DNA. The function 
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of the Stl regulatory protein bears a close resemblance to cI protein of phage λ. In both 

SaPIbov1 and SaPI1, Stl is the master repressor that negatively regulates transcription 

from the str promoter (Ubeda et al., 2008). The Stl protein of SaPI1 has similar function 

as SaPIbov1 Stl though they have no sequence similarity. To the right of str lie genes 

involved in the excision-replication-encapsidation (ERP) cycle.  

Excisionase (xis) is located immediately downstream of str in most of the SaPIs. 

SaPIs require Int for integrating into the chromosome, while excision is dependent on 

Xis along with Int. Further to the right of str gene lies the replication module which 

consists of primase (pri), rep helicase (rep) and origin of replication (ori). The role of the 

primase is to enhance replication but it is not absolutely essential (Ubeda et al., 2008). 

The rep helicase is similar to the helicase of lactococcal phage bIL312, and presumably 

involved in ATP dependent unwinding of double helical DNA to form the ssDNA 

intermediates required in DNA replication (Korolev et al., 1997). The origin of replication 

consists of two sets of inversely oriented iteron sequences six to eight bp long and 

flanking an AT-rich region (Novick et al., 2010). To the right of the origin of replication, 

and possibly in a separate transcription unit, lie several genes of unknown function. In 

SaPIbov1, gene12, also called pif (phage interference function), is immediately to the 

right of the origin of replication. The gene product of pif was found to interfere with 

phage 80α growth (Ubeda et al., 2009).  

The phage exploitation module lies to the right of the replication module and 

consists of six genes including a small terminase homolog. These six genes are 

transcribed from a single promoter, and constitute a single operon known as Operon I. 
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Figure 1. Comparison of SaPIbov1 and SaPI1 genomes.  

Genomes are aligned according to the prophage convention with integrase gene (int) at 

the left end. Genes are colored according to their sequence and function: int is shown in 

red; transcription regulators are shown green; replication genes are shown in blue; 

encapsidation genes are shown in yellow, with the terminase small subunit gene (terS) 

in dark blue; superantigen and other accessory genes are purple. The homologous 

regions between these two mobile elements are shaded in gray. 
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 Transcription of Operon I is under the control of repressor LexA and is mediated by 

binding of LexA to two Cheo boxes. These Cheo boxes are found in the 5’ region of 

Operon I and are conserved at the same location in all SaPIs sequenced thus far 

(Ubeda et al., 2007). Substitution of wt LexA with noncleavable LexA greatly reduced 

transcription of SaPIbov1 Operon I. Furthermore, deletion of Operon I was found to 

have no effect on replication of SaPIbov1, but greatly reduced formation of transducing 

particles (Ubeda et al., 2007). In SaPIbov1, two genes in Operon 1, namely 9 and 8, 

have been implicated in capsid size redirection. The small terminase homolog is 

required for SaPI-specific DNA packaging (Ubeda et al., 2007). The roles of the 

remaining three genes are not clear at present. 

SaPI specific accessory genes are located near either or both ends of the SaPI 

genome. The putative functions of many of these genes have been assigned based on 

homology or their location in the genome. SaPIs accessory genes identified to date 

encode various superantigens, toxins, antibiotic resistance and biofilm inducing 

proteins. SaPI1 carries genes for TSST1 and enterotoxins K and Q while SaPIbov1 

carries genes for TSST1 and enterotoxins C and L. Expression of these genes is 

complex and their regulation is mediated by a range of host and environmental factors. 

Expression of enterotoxin B has been shown to be inversely related to expression of 

alternate sigma factor B (Schmidt et al., 2004b) while regulation of tst is influenced by 

environmental conditions such as pH, CO2 and glucose and is believed to be mediated 

by catabolite control protein (CcpA) through catabolite responsive (Cre) sites found in 

the promoter regions of all known tst genes (Seidl et al., 2008). 
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Life cycle of SaPI 

 

SaPIs have a complex life cycle and are dependent on S. aureus and helper 

phage functions for their own propagation (Fig 2). Like prophages, SaPIs are stably 

integrated into the S. aureus chromosome at specific sites. All SaPIs discovered thus 

far occupy one of the six different attC sites in the S. aureus genome (Subedi et al., 

2007). These attC sequences are unique and unrelated to each other. Each SaPI 

contains a unique insertion site sequence (attS) that helps it undergo site specific 

integration, and no S. aureus strains sequenced thus far have been found to contain 

two SaPIs together at the same location. SaPIs stay stably integrated in the bacterial 

chromosome because of repression of their divergent promoters by the master regulator 

Stl. Mutational inactivation of StlSaPIbov1 and StlSaPI1 has been shown to cause 

spontaneous excision (Tormo-Mas et al., 2010); Bento J.C. unpublished). The site of 

action of Stl is in the intergenic region between the two divergent promoters for stl and 

str where it presumably regulates transcription from both promoters, although only 

regulation of the rightward str promoter has been shown thus far. The role of Str is 

unclear, because mutational inactivation of Str has no effect on SaPI replication (Ubeda 

et al., 2008), but xis and the replication functions are thought to be expressed from this 

transcript. 

SaPI derepression is not dependent on the SOS response, but requires a helper 

phage for relief of stl repression (Ubeda et al., 2008; Tormo-Mas et al., 2010). Not all 

SaPIs use the same helper phage proteins for relief of repression. SaPIbov1 containing 

strains that were defective in helper phage 80α interference were found to contain 

mutations in the phage encoded dut gene, which encodes a bifunctional protein that has 
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Figure 2. Schematic representation of our model for high frequency mobilization of the 
SaPIs. 
 

 On infection of SaPI positive strain with helper phage 80α, SaPI1 repression is relieved. 

It excises from the S. aureus chromosome and replicates along with the helper phage. 

SaPI1 DNA is packaged in smaller sized capsids and released along with helper phage 

after lysis. These SaPI1 particles can infect a SaPI1 negative strain and thereby 

complete the process of its horizontal transfer. 
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dUTPase activity and also functions in derepression of SaPIbov1(Tormo-Mas et al., 

2010). This protein interacts with StlSaPIbov1 and thereby prevents it from binding to the 

stl-str divergent region. Interestingly, the domain of dUTPase involved in binding to Stl is 

different from the one involved in dUTPase catalytic activity. Derepression by dUTPase 

is specific to SaPI1bov1; SaPI1 derepression is caused by a different 80α encoded 

protein, Sri (Tallent et al., 2007). This protein has also been shown to block bacterial 

DNA replication (Liu et al., 2004). In a co-purification study, 80α encoded Sri was 

demonstrated to co-purify with StlSaPI1, suggesting that like dUTPase this protein directly 

interacts with its target Stl to block repression (Harwich, 2009) 

SaPI derepression, following induction of a resident helper prophage by the SOS 

response or by superinfection with a helper phage, leads to excision of SaPI1 from the 

chromosome and replication as a high molecular weight concatemer. During replication, 

SaPI1 transcribes its Operon 1 co-temporally with the helper phage morphogenetic 

operon, producing proteins that ultimately lead to formation of smaller sized capsid 

particles with a head diameter of about 35 micrometers alongside the normal sized 

phage particles with head diameter of about 48 micrometers (Ruzin et al., 2001). These 

particles of two distinct sizes can be separated by zonal centrifugation employing 

sucrose gradients but not by isopycnic centrifugation on CsCl gradients, indicating that 

they have a similar DNA-protein ratio and that the particles are completely filled. 

Furthermore, these smaller particles were shown to carry SaPI1 DNA and were capable 

of transducing SaPI1 (Ruzin et al., 2001). These particles have been shown to consist 

entirely of helper phage encoded proteins for both SaPI1 (Tallent et al., 2007) and 

SaPIbov1 (Tormo et al., 2008). Genetic experiments in SaPIbov1 have shown that 
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inactivation of gp8 or gp9 causes failure to produce SaPIbov1 monomer sized DNA, 

implying that SaPIbov1 gp8 and gp9 are involved in production of smaller sized capsids. 

In addition to capsid size redirection, high frequency mobilization of SaPI follows a novel 

mechanism involving small terminase swapping that leads to specific headful packaging 

of SaPI DNA into helper phage encoded capsids. This phenomenon of small terminase 

swapping is a unique feature of SaPI mobilization. Deletion of SaPI terS results in a 

thousand fold decrease in the mobilization frequency of SaPI1 (Ubeda et al., 2009). 

Helper phage tail assembly occurs independently and is not altered by SaPIs. Finished 

tails attach to the filled capsid by docking to the portal complex yielding infectious SaPI 

virions. Expression of 80α late genes leads to production of holin and endolysin that 

lyse cells and release infectious SaPI and phage virions. These SaPI particles can 

infect naïve cells and complete their life cycle by re-integrating at their specific 

chromosomal att site. 

Staphylococcal temperate phages 

A majority of S. aureus phages are temperate with a genome size of 

approximately 45kb. However, there are also a few virulent phages, including 

Myoviridae such as Twort and Φ29-like Podoviridae. All S. aureus temperate phages 

sequenced thus far (Landolo et al., 2002; Vybiral et al., 2003; Kwan et al., 2005; Christie 

et al., 2010) belong to the family Siphoviridae and order Caudovirales and have 

icosahedral heads with non-contractile flexuous tails. These phages fall under two 

morphotypes, namely morphotype B1 and morphotype B2 (Ackermann, 2001). The 

majority of Siphoviridae, including phage 80α, belong to morphotype B1 and have 

isometric icosahedral capsids. A few Siphoviridae such as HK2, N9, N15, P52 and P87 
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belong to morphotype B2 and have elongated icosahedral capsids (Hans-Wolfgang 

Ackermann, 2001). All these phages share a modular genomic organization that is 

highly mosaic, with genes clustered into functional units that presumably allow temporal 

expression of polycistronic transcripts. Gene expression in these phages is highly 

ordered and regulated.  

Staphylococcus phage 80α 

 
S. aureus phage 80α (GenBank: DQ517338.1) is a generalized transducing 

phage that mobilizes several different SaPIs. The length of the 80α genome is 43,864 

bp and it contains 73 open reading frames (orfs) of 50 or more codons (Fig 3). Phage 

80α was first isolated by Novick (Novick, 1963) during attempts to adapt phage 80 for 

growth on NTCT8325, and was originally believed to be a recombinant of phages 11 

and 80. However recent studies clearly demonstrate that phage 80α is a variant of 

typing phage 53 that has recombined with phages 11 and 13 (Christie et al., 2010). 

Phage 80α has nearly 90% nucleotide sequence identity with phage 53. The areas of 

divergence between phage 80α and phage 53 are accounted for by nearly identical 

matches from sequences of phages 11 and 13, except for a 2663 bp block of sequence 

affecting the immunity module that is not found in either phage 11 or 13, but is highly 

conserved among other staphylococcal Siphoviridae (Christie et al., 2010). 
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Figure 3. Map of the 80α genome.  
Shown is a schematic representation of the 80α genome with its modular architecture. 
Relevant genes are indicated as well as putative functional designations. 
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Like the other staphylococcal Siphoviridae, phage 80α has a distinctly modular 

genomic architecture with clustering of genes that are temporally co-expressed. The 

phage 80α genome can be divided into eight different modules, namely (1) phage 

integration, (2) transcriptional regulation (3) DNA replication (4) packaging (5) head (6) 

tail (7) tail fibers and (8) lysis, as per the model originally proposed by Botstein 

(Botstein, 1980). 

The phage integration module consists of the phage attachment site (attP), 

phage integrase gene, and phage excisionase gene (xis). Phage 80α integrates in an 

intergenic region between genes rmpF, which encodes ribosomal protein L32, and sirH 

which encodes cell wall anchored protein SirH. The integration site corresponds to 

nucleotide position 1,042,159 in the NCTC 8325 genome (accession number: 

NC_007795). Phage 80α integrase belongs to the serine recombinase family and is 

required for integrative and excisive recombination. Excisionases are architectural 

proteins that bind to DNA and bend it to promote attL×attR recombination. Though 

phage 80α and phage 53 encoded integrases are identical, their respective 

excisionases are not. Phage 80α excisionase is identical to Ø11 xis. The mechanism of 

recombination by serine recombinases in staphylococcal Siphoviridae is poorly 

understood and it is not completely known how they promote excision in spite of 

shuffling their excisionase.  

Like that of other temperate phages, the 80α lysogeny module consists of a 

bidirectional switch region that encodes two divergent transcriptional regulators 

responsible for the lysis-lysogeny decision. The lytic-lysogeny bistable switch has been 

extensively studied in phage λ (Dodd et al., 2005). Lysogeny is a stable epigenetic state 
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during which a master repressor, cI in the case of phage λ, represses promoters PR and 

PL and thereby prevents transcription of lytic genes, including cro, while activating PRM 

to provide constitutive production of cI. Like CIλ, phage 80α repressor protein consists of 

two domains. The N-terminal domain has a helix-turn-helix motif consistent with DNA 

binding activity while the C-terminus has a LexA-like autopeptidase domain found in a 

large number of phage repressors. The presence of a C-terminal LexA-like domain 

indicates that, like LexA, cleavage of 80α repressor is mediated by RecA during SOS 

induction of an 80α prophage. The Cro-like proteins of 80α also contain a helix-turn 

helix motif, characteristic of DNA binding ability.  

80α has an initiator-helicase loader type of replication module (Weigel et al., 

2006; Christie et al., 2010) which is preceded by a large orf of unknown function on the 

complementary strand. Siphoviridae of gram positive bacteria with an IL-type (initiator-

helicase loader) of replication module encode initiators of λ O-type but helicase loaders 

of DnaCEco- type (Weigel et al., 2006). The other important characteristics of this type of 

replication module are that the phage replication origin resides within the initiator gene 

and the initiator is also located upstream of the helicase loader. Resolvase genes are 

invariably found downstream of the initiator-helicase loader gene pairs and are mostly 

rusA-type. The phage integrase and repressor genes are always found upstream of the 

initiator and transcribed in the opposite direction. The putative initiator protein in 80α is 

encoded by orf 20, which has a highly conserved C-terminal domain also found in other 

bacteriophages. Within the DNA sequence that codes for the N-terminal region of this 

protein lies the presumptive origin of replication of this phage. The origin of replication is 

characterized by direct and inverted repeats and is AT rich. The putative helicase 
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loader, DnaC, is encoded by orf 21 and is highly conserved among other staphylococcal 

Siphoviridae such as ΦSLT, 80, ROSA, 69, 85, 77, 88 and ΦETA. Downstream of the 

helicase loader is an open reading frame (orf 22) that encodes Sri. In-frame deletion of 

sri does not affect phage growth but fails to induce SaPI1 (Tallent, 2007; Harwich, 2009; 

Tormo-Mas et al., 2010). Downstream of sri is a gene (orf 23) that has a highly 

conserved domain but its function is unknown. Orf 24 encodes a RusA type resolvase. 

RusA type resolvases are homodimeric Holliday junction specific endonucleases that 

resolve Holliday intermediates by junction cleavage (Sharples et al., 1999). Between the 

replication and packaging modules are sixteen orfs of which only two encode genes of 

known function. The dUTPase encoded by orf 32 is a moonlighting protein that not only 

has dUTPase activity but also acts as an antirepressor of SaPIbov1 (Tormo-Mas et al., 

2010). Orf 39 encodes RinA, which has been recently implicated as a positive regulator 

of transcription of the morphogenetic genes in 80α and Ø11 (Harwich, 2009; Ferrer et 

al., 2011).  

The packaging module consists of genes that encode the terminase small (terS) 

and large subunits (terL) and portal proteins (gp42). In most double stranded viruses 

that package their DNA by the headful mechanism, the small and large terminase 

subunits assemble to form a holoenzyme, the terminase complex, responsible for 

recognition of a packaging (pac) site on replicating concatemeric phage DNA and 

making an initial cleavage downstream of this pac site (Fujisawa et al., 1997). The DNA 

bound terminase nucleoprotein docks to the portal to make a packaging motor. The 

packaging motor translocates the viral genome into the procapsid by a mechanism 

known as thermal ratcheting until it is condensed to a near liquid crystalline density. The 
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packaging process is a highly energy intensive process that is driven by ATP hydrolysis 

and the packaging motors are the most powerful biological motors thus far known. Upon 

packaging a headful of DNA, the terminase makes a second cut thus separating the 

DNA concatemer- terminase complex from the filled capsid. This concatemer-terminase 

complex then docks to another procapsid to initiate a second round of packaging, and 

so on. DNA packaging is thus a processive process and each round of packaging 

ensures that a DNA length of more than the viral genome is packaged into each capsid 

(Johnson et al., 2007).  

The capsid morphogenesis module consists of genes encoding minor capsid 

protein (gp44), scaffold (gp46) and major capsid protein (gp47). Procapsid assembly is 

presumably initiated by interaction of scaffold with portal proteins. Following this initial 

nucleation, capsid protein self assembles to form a transient capsid precursor known as 

procapsid. The procapsid undergoes maturation during the packaging process to form 

mature capsid. One intriguing feature of SaPI1-phage interaction is capsid size 

redirection. Helper phage capsid assembly is redirected to form smaller capsids due to 

presence of SaPI encoded proteins. Capsid morphogenesis and size redirection are 

discussed in greater detail in later sections. 

Tail assembly is a complex process that is as elaborate as the head assembly in 

Caudovirales. In Podoviridae, tail assembly occurs by sequential attachment of tail 

proteins to the filled capsid. In Φ29, for example, the upper collar protein is assembled 

first followed by lower collar, tail and neck appendages (Camacho et al., 1979). Tail 

assembly in Myoviridae and Siphoviridae occurs independently of head assembly and 

maturation, leading to formation of a “mature” tail that binds to the head via the neck 
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proteins. The tail assembly in Siphoviridae and Myoviridae follows a strict order in spite 

of being an independent process. Tail assembly has been extensively studied in phage 

T4, and found to be strictly sequential (Kikuchi et al., 1975a; Kikuchi et al., 1975b; 

Kikuchi et al., 1975c). In Siphoviridae, tail assembly starts from the initiator complex that 

forms the absorption device at the distal end of the tail, followed by polymerization of 

major tail proteins to form a tubular structure. Binding of terminator proteins to the 

tubular complex completes the tail assembly (Pell et al., 2009). These preformed tails in 

turn interact via the terminator proteins with the neck proteins that are associated with 

the head to form a tailed virus. The length of the tails is determined by the tape measure 

protein that presumably acts as an internal scaffold for the polymerization of the tube. 

3D-reconstructions of cryo-EM images of T4 and SPP1 tails reveal electron density 

inside their tail tube that could be attributed to either DNA or the tape measure protein 

(Leiman et al., 2004; Kostyuchenko et al., 2005; Plisson et al., 2007). 

The tail module of phage 80α consists of genes encoded by orf 49 to orf 62. The 

protein encoded by orf49 had been identified as a structural component of the phage 

and belongs to the family of putative head-tail connector proteins that also include the 

proteins gp6 and gp15 from bacteriophage HK97 and SPP1, respectively. Orf 50, 51 

and 52 encode proteins with unknown functions. The product of orf51 belongs to the 

family DUF646 and is predicted to be a protein involved in tail completion. The major tail 

protein encoded by orf 53 is a highly abundant protein that belongs to phage tail 2 super 

family and is found highly conserved among Gram-positive phages. In-frame deletion of 

orf 53 is lethal to the phage as well as to SaPI1. There are two small overlapping orfs 

immediately downstream of the gene encoding major tail protein. These overlapping 
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orfs contain a predicted -1 translational shift characterized by heptanucleotide “slippery 

sequences” (Xu et al., 2004; Christie et al., 2010). This type of programmed 

translational frameshift was first identified in phage λ (Levin et al., 1993) and has been 

found in many tailed bacteriophages. The tape measure protein, encoded by orf 56, has 

the largest predicted mass (125.77 KDa) among the 80α proteins. It has been identified 

as a structural protein of low abundance and is completely absent in the procapsid 

fraction (Tallent et al., 2007). Orf 58 encodes a protein that belongs to the sipho-tail 

super family and is a minor component of the tail (Poliakov et al., 2008). The proteins 

encoded by orfs 59, 61 and 62 are found in both phage and transducing particles and 

are predicted to be minor tail proteins (Tallent et al., 2007; Christie et al., 2010). The 

protein encoded by orf 59 has two conserved domains, a DUF1142 domain of unknown 

function found in phages at the N-terminal end and a SGNH hydrolase domain 

belonging to a subfamily of lipases and esterases at the C-terminal end (Tallent et al., 

2007). The protein encoded by orf62 is essential for infectious phage particles but not 

required by SaPI1 transducing particles, for reasons not understood. Furthermore, in-

frame deletion of the orf62 homolog in a closely related phage, Φ11, yields particles 

lacking base-plate like structure at the end of tails in both phage and transducing 

particles (Tormo et al., 2008; Christie et al., 2010). 

The tail fiber module of phage 80α consists of orfs 67 and 68. Orf67 encodes a 

protein that has an N-terminal CHAP domain and a C-terminal lysozyme domain and 

presumably has peptidoglycan hydrolase activity. Orf 68 encodes a putative tail fiber 

protein containing a central collagen triple helix motif found in tail fibers of other phages 

(Christie et al., 2010).  
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Bacteriophages employ two fundamentally different strategies for bacterial cell 

lysis (Wang et al., 2000). Most ds DNA phages use a strategy that involves at least two 

proteins, namely holin and lysin. The holin is a transmembrane protein that creates 

lesions in the cytoplasmic membrane through which endolysins can pass and gain 

access to the murein layer. In the other strategy, used by most ssRNA and ssDNA 

phages such as phage ΦX174, there is no involvement of endolysin. Instead, there is a 

small trans-membrane protein such as the E-protein in ΦX174, having no sequence 

similarity to holin, that disrupts the cytoplasmic membrane to cause cell lysis. All phages 

of the gram-positive bacteria have endolysins with two domains (Diaz et al., 1990; 

Garcia et al., 1990). The N-terminal domain contains the catalytic activity that may be 

either an endo-β-N-acetylglucosaminidase or N-acetylmuramidase while the C-terminal 

cell binding domain (CBD domain) helps it bind to specific carbohydrates found in the 

cell wall of the host bacteria (Lopez et al., 1992). Timing is of utmost essence in 

bacterial cell lysis because premature lysis would invariably lead to inefficient yield of 

phage progeny. The lytic module is expressed late after completion of replication and 

leads to accumulation of the transmembrane holin protein. Recently it has been shown 

with help of elegant experiments in E. coli that holin builds up to a critical level that 

triggers the lysis clock (Grundling et al., 2001; White et al., 2011). Phage 80α holin is 

encoded by orf 70 and is predicted by MEMSAT3 topology analysis (Nugent et al., 

2009) to contain two transmembrane helices. Phage 80α endolysin is encoded by orf71 

and contains three conserved domains, namely the N-terminal CHAP domain followed 

by an amidase 3 and a C-terminal SH3b cell wall binding domain. The N-terminal CHAP 

(cysteine, histidine-dependent amidohydrolases/ peptidases) domain is often found in 
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association with other domains that cleave peptidoglycan (Bateman et al., 2003). N-

acetylmuramoyl-L-alanine amidase or MurNAc-LAA is an autolysin that hydrolyzes the 

amide bond between N-acetylmuramoyl and L-amino acids in certain cell wall 

glycopeptides. The C-terminal SH3b cell wall binding domains have been shown to be 

necessary for accurate cell wall recognition and subsequent staphylolytic activity for 

some endolysins (Becker et al., 2009). 

The SaPI1- helper phage 80α relationship 

SaPI1 has a parasitic relationship with helper phage 80α and exploits many of 

the phage functions for its own propagation. The molecular piracy exhibited by SaPI1 is 

reminiscent of the exploitation of helper phage P2 by an unrelated satellite phage/ 

plasmid P4 in E. coli. The intricate relationship between P2 and P4 serves as a useful 

model to explain molecular piracy and has been extensively studied (Inman et al., 1971; 

Barrett et al., 1973; Six et al., 1973; Six,1975; Shore et al., 1978; Six et al., 1978) and 

reviewed in detail (Christie et al., 1990; Lindqvist et al., 1993).  

The P2-P4 paradigm 

In the P2-P4 system, each phage is able to induce the other via transcriptional 

cross talk. When P2 infects a P4 lysogen, P2 encoded Cox induces P4 by functioning 

as a transcriptional activator of the P4 PLL promoter and thereby causing it to excise and 

replicate. When P4 infects a P2 lysogen, P4 encoded -protein derepresses P2 to 

excise and replicate. Furthermore, satellite phage P4 does not encode any structural 

proteins except an external scaffold, Sid, and relies completely on helper phage P2 

structural proteins for its own propagation. Like most dsDNA bacteriophages, P2 capsid 
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assembly involves copolymerization of major capsid proteins (gpN) and portal proteins 

(gpQ) in the presence of internal scaffolding protein (gpO). Size determination of the P4 

capsid is carried out by a P4 encoded protein, Sid, that acts transiently as an external 

scaffold (Marvik et al., 1995) during capsid assembly and favors the formation of smaller 

capsids (T=4) to the larger ones (T=7). These smaller capsids have roughly 1/3rd the 

volume of P2 capsids, commensurate with the smaller size of the P4 genome (Dokland 

et al., 1992). Additionally, both phages cause transactivation of late gene expression 

from the other genome. P4 encoded  transactivates expression of P2 morphogenetic 

operons, along with its own late gene expression. Similarly, P2 encoded Ogr is a 

transcriptional activator of both P2 and P4 late gene expression. Thus P4 efficiently 

exploits P2 functions at various levels for its own propagation. 

The molecular piracy exhibited by P4 is a useful model to explain, albeit not 

completely, SaPI-helper phage interaction. Like P4, SaPIs lack structural genes and rely 

completely on helper phage functions for their own encapsidation at the expense of 

phage propagation. Normally, 80α has a burst size of about 600 infectious particles but 

in presence of SaPI1 is reduced by two orders of magnitude to about six infectious 

particles per cell (Ruzin et al., 2001). This phenomenon is termed SaPI interference and 

its effect on helper phage propagation is so profound that plaque formation is 

completely blocked if phage is plated on a lawn of a SaPI1-positive strain. There are at 

least three levels of interaction between SaPI1 and its helper phage. The first interaction 

is at the transcriptional level. SaPI1 excision and replication are helper phage 

dependent and rely on 80α encoded Sri for derepression of SaPI1 early rightward gene 

expression. When 80α infects a SaPI containing strain or following induction of a strain 
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containing both 80α and SaPI1, SaPI1 is derepressed and commits to the lytic decision. 

However, unlike the P2-P4 system, transduction of SaPI1 into an 80α lysogen does not 

invoke lytic mode in 80α because there is no reciprocal derepression. The second level 

of interaction involves small terminase swapping, a unique feature that is not found in 

the P2-P4 system. SaPI1 encoded TerS efficiently interacts with 80α encoded TerL to 

encapsidate SaPI1 DNA resulting in a transduction frequency at least three orders of 

magnitude above the level found in generalized transduction. In-frame deletion of SaPI1 

terS drastically decreases the yield of transducing particles. The third level of interaction 

between SaPI1 and 80α involves capsid assembly. SaPI1 encoded proteins interact 

with helper phage major capsid proteins to redirect capsid size and form smaller 

capsids which are one-third the size of 80α capsids. These small capsids are able to 

encapsidate a SaPI1 monomer but not a complete phage 80α genome. 

This study was designed to understand the mechanism of helper phage capsid 

size redirection. Several approaches were used. In order to elucidate the morphology of 

80α and SaPI1 capsids and procapsids, we constructed mutants to allow efficient 

isolation of capsid precursors for structural analysis. In collaboration with Dr. Terje 

Dokland’s lab at UAB, we conducted structural studies that involved isolation of these 

particles and subjected them to cryo-electron microscopy and 3D-reconstruction. 

Modeling studies were performed to understand how the capsid subunits interacted with 

each other. SDS-PAGE and mass spectrometric studies of capsid precursors were used 

to identify SaPI1 proteins that could be involved in capsid size redirection. Targeted 

mutagenesis and co-expression studies were carried out to establish the roles of 
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individual proteins in capsid assembly and size redirection and to understand the 

phenomenon of interference. 
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Chapter 2 

Materials and Methods 
 

Bacterial culture methods  

Bacterial strains that were used in this study are listed in Table 1. S. aureus was 

grown overnight on phage agar (0.3% (wt/vol) Casamino acids, 0.3% (wt/vol) yeast 

extract, 100 mM NaCl, 1.5% agar (wt/vol), 0.5 mM CaCl2, pH 7.8)(Novick,1991) or on 

Tryptic Soy Agar (TSA) (Remel, Lenexa, KS) at an incubation temperature of 30ºC. S. 

aureus strains that contained SaPI1 tst::tetM were plated on GL agar (Novick,1991) 

(0.3% (wt/vol) Casamino acids, 0.3% (wt/vol) Yeast extract, 100 mM NaCl, 0.33% 

(vol/vol) Sodium lactate syrup, 25% (vol/vol) glycerol, 1.5% (wt/vol) agar, 0.17 mM 

sodium citrate, pH 7.8) supplemented with 5 μg/ml tetracycline. S. aureus strains were 

cultured in either Tryptic Soy Broth (TSB) (Remel, Lenexa, KS), Brain Heart Infusion 

(BHI) (Remel, Lenexa, KS), or CY-GL broth (Novick, 1991) and grown at 30ºC unless 

otherwise indicated. SA178RI derivatives were grown overnight at 37ºC either in BHI or 

Antibiotic medium 3 supplemented with appropriate antibiotics. E. coli strains were 

cultured in Luria Bertani (LB) broth (Difco, Franklin Lakes, NJ) or on LB Agar plates 

supplemented with ampicillin (100 μg/ml), as required and grown at 37ºC. 

Allelic exchange using derivatives of the shuttle vector pMAD required media  
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Table 1. Bacterial strains and plasmids used in this study 

S aureus strain Description 
Reference or 
source 

RN450 NCTC8325 cured of Φ11, Φ12 and Φ13 Novick, 1967 

RN4220 Restriction defective derivative of RN450 
de Azavedo et al., 
1985 

SA178RI CYL316 containing T7 RNA polymerase, TetR D'Elia et al., 2006 
RN10616 RN4220 (80α) Ubeda et al., 2009 
RN10628 RN4220 (80α) SaPI1 tst::tetM Ubeda et al., 2009 
ST24 RN4220 (80α ΔterS) This study 
ST37 RN4220 (80α) SaPI1 tst::tetM ΔterS This study 
ST51 RN4220 (80α) Δorf46 SaPI1 tst::tetM This study 
ST63 RN4220 (80α) ΔterS SaPI1 tst::tetM ΔterS This study 
ST64 RN4220 (80α) Δorf44 This study 
ST65 RN4220 (80α) Δorf44 SaPI1 tst::tetM This study 
ST66 SA178RI pPD18 This study 
ST70 SA178RI pPD20 This study 
ST71 SA178RI pPD21 This study 
ST72 SA178RI pPD22 This study 
ST73 SA178RI pG164 This study 
ST82 RN4220 (80α::SaPI1 orf6+7) This study 
ST83 RN4220 (80α ΔterS Δorf53) SaPI1 tst::tetM This study 
ST91 RN4220 (80α Δorf46) This study 
ST92 RN4220 (80α Δorf44 Δorf53) SaPI1 tst::tetM  This study 
ST97 RN4220 (80α::SaPI1 orf7) This study 
ST98 RN4220 (80α) SaPI1 tst::tetM Δorf7 This study 
ST99 RN4220 (80α::SaPI1 orf6) This study 
ST100 RN4220 (80α) SaPI1 tst::tetM Δorf6 This study 
ST112 SA178RI pPD44 This study 
ST113 SA178RI pPD45 This study 
ST114 SA178RI pPD46 This study 
ST115 SA178RI pPD47 This study 
ST116 SA178RI pPD49 This study 
ST117 SA178RI pPD50 This study 
ST118 SA178RI pPD51 This study 
ST119 SA178RI pPD52 This study 
E. coli strains     

DH5α 
E. coli F- endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG 
Φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK

- mK
+), λ–  Invitrogen 

BLRDE3 
E. coli F- ompT hsdSB(rB

- mB
- ) gal dcm(DE3) Δ(srl-

recA)306::Tn10 (TetR) Novagen 

Plasmids for over-expression of proteins 

pET21a 
Plasmid containing T7 promoter for expressing 
proteins in E. coli Novagen 

pG164 S. aureus shuttle plasmid containing T7 promoter D'Elia et al., 2006 

pPD1 pET21a derivative with 80α gp47 This study 

pPD2 pET21a derivative with 80α gp47 and gp46 This study 

pPD18 pG164 derivative with 80α gp47 This study 
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pPD20 pG164 derivative with 80α gp47. This study 

pPD21 pG164 derivative with 80α gp46 and gp47 This study 

pPD22 pG164 derivative with 80α gp42 to gp47 This study 

pPD44 pG164 derivative with 80α gp47 and SaPI1 gp6 This study 

pPD45 pG164 derivative with 80α gp47 and SaPI1 gp7 This study 

pPD46 
pG164 derivative with 80α gp47 and SaPI1 gp6 and 
gp7 This study 

pPD47 
pG164 derivative with 80α gp47 and SaPI1 gp5, gp6 
and gp7 This study 

pPD51 
pG164 derivative with 80α gp46, gp47 and SaPI1 gp6 
and gp7 This study 

pPD52 
pG164 derivative with 80α gp46, gp47 and SaPI1 
gp5, gp6 and gp7 This study 

Plasmids for deletion 

pMAD 
Shuttle plasmid used for allelic exchange in Gram-
positive bacteria Arnaud et al., 2004 

pPD8 pMAD derivative for deletion of 80α orf 46 This study 

pPD11 pMAD derivative for deletion of SaPI1 terS This study 

pPD14 pMAD derivative for deletion of 80α orf22 This study 

pPD17 pMAD derivative for deletion of 80α orf44 This study 

pPD34 pMAD derivative for deletion of SaPI1 orf7 This study 

pPD35 pMAD derivative for deletion of SaPI1 orf6 This study 

pPD27 pMAD derivative for deletion of 80α orf 53 This study 

Plasmids for inserting mutant alleles 

pPD36 pMAD derivative for inserting SaPI1 orf6 in 80α This study 

pPD37 pMAD derivative for inserting SaPI1 orf7 in 80α This study 

pPD28 pMAD derivative for inserting SaPI1 orf6 and7 in 80α This study 
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supplemented with 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (Xgal) (200 

μg/ml) (American Bioanalytical, Natick, MA) and erythromycin (5 μg/ml) for 

staphylococcal strains or ampicillin (100 μg/ml) for E. coli. Studies involving 

overexpression of proteins in S. aureus strain SA178RI containing pG164 derivatives 

were grown overnight in media containing 15 µg/ ml chloramphenicol and 5 µg/ml 

tetracycline.  

Phage propagation  

Freshly prepared BHI or CY-GL media were inoculated, at a ratio of 1:100, with 

previously grown overnight broth culture of a phage-sensitive S. aureus strain, RN4220, 

RN450, or their derivatives, and incubated at 30ºC on an orbital shaker at 200 rpm. Cell 

growth was monitored using either a Klett-Sommerson colorimeter or a 

spectrophotometer until it reached an optical density (OD) of 0.6 (λabsorbance = 550nm) 

(Klett = 50). This optical density corresponds to the mid-exponential phase of growth, 

with a cell concentration of about 3 X 108 cfu. At this point an equal volume of SA 

Phage Buffer (Novick,1991)(1 mM MgSO4, 4 mM CaCl2, 0.05 M Tris-HCl pH 7.8, 100 

mM NaCl, 0.1% gelatin) was added to the culture, followed by addition of bacteriophage 

80α at a multiplicity of infection (m.o.i.) equal to 0.1. The infected culture was incubated 

at 30ºC on an orbital shaker at 100 rpm and monitored for lysis until the optical density 

stopped decreasing.  

Alternatively, bacteriophage 80α was obtained by induction of lysogenic 

staphylococcal strains. Freshly prepared BHI medium was inoculated 1:100 with 

overnight cultures of lysogenic strains and incubated at 30oC on an orbital shaker at 200 

rpm until Klett=50. Lysogeny was terminated either by addition of mitomycin C (final 
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concentration=2 μg/ml) or ciprofloxacin (final concentration= 1 μg/ml) as indicated, or by 

UV irradiation. Mitomycin C is a potent DNA cross linker while ciprofloxacin acts by 

trapping DNA gyrase on DNA and thus blocking the replication fork movement. For UV 

induction, the cells were spun down by centrifugation for 15 minutes at 5000 rpm at 4ºC, 

resuspended to the original volume in SA phage buffer, exposed to UV light (intensity= 

70 Joules.cm-2) for 20 seconds or as indicated, diluted 1:1 with BHI broth, and 

incubated at 30ºC, 200 rpm until lysis. These lysates were filtered through 0.45 μm 

syringe filters (Millipore, Billerica, MA) and stored at 4ºC for further analysis.  

Phage concentration was determined by plating tenfold serial dilutions of lysate 

on a sensitive S. aureus indicator strain (RN450 or RN4220) using the double layer 

method. Phage were serially diluted in SA phage buffer, and 100 μl aliquots of each 

phage dilution were added to 100 μl of an overnight culture of indicator cells, mixed with 

2 ml of SA top agar (Novick, 1991) (0.3% (wt/vol) Casamino acids, 0.3% (wt/vol) Yeast 

extract, 100 mM NaCl, 0.5% agar (wt/vol), 0.5 mM CaCl2, pH 7.8) and quickly poured 

onto the surface of a phage agar plate. The plates were then initially incubated upright 

for about 30 minutes until the top agar had hardened and then inverted and left 

overnight in the incubator at 30ºC. Plaques were counted and phage titer was 

determined using the following equation: 

Pfu/ml = number of plaques X 10 / dilution 

The transducing titer of lysates prepared from SaPI1 tst::tetM strains was 

determined by using ten-fold serial dilutions of lysates. 100μl of these dilutions were 

mixed with 100μl of indicator cells as described above. The mixture was spread onto the 

surface of GL agar plates supplemented with tetracycline (5 μg/ml). Colonies were 
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counted after a 48-hour incubation period at 30ºC. Transducing units were determined 

using the equation: 

TU/ml = number colonies X 10 / dilution 

PEG precipitation  

Cellular debris was removed from phage 80α and SaPI1 lysates by centrifugation 

at 7000 rpm for 20 minutes at 4ºC in a Sorvall GS-3 rotor. Polyethylene glycol 8000 

(PEG) (0.1% wt/vol) and NaCl (0.5 M) were slowly dissolved, with gentle stirring, in the 

supernatant and the mixture was incubated overnight at 4ºC. The lysate was centrifuged 

for 20 minutes at 7000 rpm and 4ºC to precipitate phage containing PEG. The 

supernatant was decanted and the PEG precipitate was removed from the sides of the 

bottle using a cell scraper or a rubber policeman and resuspended in SA phage buffer 

(9 ml per liter of lysate). The resuspended PEG precipitate was collected in a sterile 

Corex tube and allowed to incubate overnight at 4ºC, followed by centrifugation for 10 

minutes at 10,000 rpm at 4ºC in a Sorvall SS-34 rotor. The supernatant was transferred 

to a sterile tube and the remaining pellet was again resuspended in SA phage buffer (3 

ml) to extract the remaining phage and centrifuged a second time under similar 

conditions. The re-extracted supernatant and the first supernatant were pooled together.  

Phage purification  

The phage and SaPI1 particles extracted from the PEG precipitate were further 

purified by centrifugation in a cesium chloride (CsCl) step gradient. Cesium chloride 

solutions of four different densities corresponding to ρ= 1.3 g/ml, 1.4g/ml, 1.5g/ml and 

1.6g/ml were prepared in SA phage buffer as follows: Masses of 10.1 g, 13.47g 16.87g 

and 20.2g CsCl were dissolved in SA phage buffer to a final volume of 25ml in a 
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volumetric flask. A step gradient was prepared in a clear centrifuge tube (Beckman, 

Fullerton, CA) 1 x 3 1/2 inches as follows: The bottom layer was laid with 2ml 

(ρ=1.6g/ml) of the CsCl solution. 3ml CsCl solution (ρ=1.5g/ml) was carefully laid on top 

of the first layer with the help of a Pasteur pipette followed by a 4ml (ρ=1.4g/ml) layer 

and finally a 4ml (ρ=1.3g/ml) layer. The pooled phage supernatant was carefully added 

on top. The centrifuge tubes containing the CsCl gradients were centrifuged in a 

Beckman SW28 rotor for three hours at 15ºC 24,000 rpm. The rotor was allowed to stop 

without braking at the end of the spin. The bluish phage band, visible at the 1.4-1.5 

interface, was collected by puncturing the tube at the side with a syringe and removing 

it. The banded phage sample was dialyzed at 4ºC with four exchanges of SA phage 

buffer using a Slide-A-Lyzer dialysis cassette (Pierce Biotechnology, Rockford, IL) with 

a 10,000 molecular weight cut off (MWCO).  

Production and purification of capsids and procapsids for EM analysis 

80α and SaPI1 procapsids were produced for EM and MS analysis in Dr 

Dokland’s lab in the following way. The 80α ΔterS lysogen ST24 was used as the 

source of 80α procapsids, while SaPI1 procapsids were isolated from the SaPI1ΔterS-

containing 80α lysogen ST37 and SaPI1ΔterS-containing 80α ΔterS lysogen ST64. 

Strains were grown at 32 C in CY broth as previously described, and the 80α prophages 

were induced by addition of 2 mg/L mitomycin C (Sigma) at OD540 = 0.4–0.5, with lysis 

occurring 3 h post induction. The lysates were clarified by centrifugation at 5400×g for 

20 min. Procapsids were precipitated with 10% (wt/vol) PEG 6000 and 0.5 M NaCl 

overnight at 4 °C, followed by centrifugation at 5400×g for 20 min. The pellets were 
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resuspended in phage buffer (50 mM Tris pH 7.8, 100 mM NaCl, 1 mM MgSO4 and 4 

mM CaCl2), and 0.30–0.50g of CsCl was added per milliliter of suspension. In some 

cases, half a volume of chloroform was added to the PEG pellet to facilitate 

resuspension, resulting in a cleaner sample. No difference was observed in the 

structure or protein composition between treated and untreated samples. The resulting 

solution was centrifuged at 339,000×g for 20 h in a Beckman NVT90 rotor. The 

procapsid-containing bands from the CsCl gradients were collected and dialyzed 

against dialysis buffer (20mM Tris pH 7.8, 50mM NaCl, 1mM MgCl2 and 2mM CaCl2) for 

further analysis. 

To separate the procapsids from tails, the dialyzed CsCl bands were loaded onto 

10–40% sucrose gradients in phage buffer and centrifuged for 2h at 110,000×g in a 

Beckman SW41 rotor. Twelve fractions were collected manually from the sucrose 

gradients and analyzed by SDS-PAGE. Fractions containing predominantly procapsids 

and procapsids with attached tails were pelleted by centrifugation at 110,000×g for 1h. 

The pellet was resuspended in dialysis buffer and used for EM and MS experiments. 

Electron microscopy 

Samples for negative stain were prepared by applying 3 μl of procapsid 

suspension to glow-discharged carbon-only grids (Electron Microscopy Sciences), 

washed two times with dialysis buffer and stained with 1% uranyl acetate. Cryo-EM was 

performed by standard methods: 3μl of sample was applied to C-flat holey film (Electron 

Microscopy Sciences), blotted briefly before plunging into liquid ethane and transferred 

to a Gatan cryo-sample holder. All samples were observed in an FEI Tecnai F20 
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electron microscope operated at 200 kV, and images were captured on a 4000 × 4000 

Gatan Ultrascan CCD camera or on Kodak SO-163 film at magnifications from 38,000× 

to 81,200×. Electron microscopy was performed at the HRIF Electron Microscopy Core, 

University of Alabama, Birmingham. 

Protein identification 

Coomassie-blue-stained SDS-PAGE gels of 80α and SaPI1 procapsids were cut 

into 10–12 strips. The strips were destained in 60% methanol and 0.1% trifluoroacetic 

acid (TFA) and dried with pure acetonitrile. The acetonitrile was removed by 

evaporation in a Speedvac centrifugal evaporator, and protein digestion was performed 

by addition of 10 μg/ml Trypsin Gold (Promega) solution in 100 mM ammonium 

bicarbonate and incubation for 8 h at 37 °C. After extraction with 10% acetonitrile, the 

peptides were loaded on a 100-nm × 10-cm capillary column in-house packed with C18 

Monitor 100 A-spherical silica beads and eluted by a 1-h gradient of 10–100% 

acetonitrile and 0.1% TFA. Mass spectrometric analysis was performed on an LTQ XL 

(Thermo Finnigan) spectrometer in the Mass Spectrometry/ Proteomics shared facility, 

UAB Birmingham. The search for matching peptide sequences was performed using the 

SEQUEST search engine with the UniProt database, including staphylococcal and 

phage entries. Only peptides with a probability of >0.99 were considered. 

Measurement of full-length protein masses 

Measurement of the whole masses of the most abundant proteins composing 

80α and SaPI1 procapsids was performed as described by Poliakov et al (Poliakov et 

al., 2008). Briefly, purified procapsids were disrupted in 6M urea and 0.1% TFA, loaded 
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on a C4 microtrap reverse-phase column and eluted with a gradient of 0–50% 

isopropanol and 0–50% acetonitrile in 0.1% formic acid. Spectra were acquired on a 

time-of-flight electrospray mass spectrometer (LCT, Micromass). 

Confirmation of cleavage sites of scaffolding and major capsid proteins was 

achieved by tandem MS of N- and C-terminal peptides on matrix-assisted laser 

desorption/ionization TOF/TOF tandem mass spectrometer (Ultraflex III; Bruker 

Daltonics). In-gel digests of 80α scaffolding and major capsid proteins were spotted on 

a Bruker 384 spot plate and allowed to dry. Equal volumes of 5 mg/ml α-cyano-

hydroxycinnamic acid in 60% acetonitrile and 0.1% TFA were spotted on top of the 

digests and allowed to dry. Peptides matching expected C- or N-terminal peptides of 

truncated proteins to <0.02Da were fragmented by laser-induced dissociation. Fragment 

assignment was performed with BioTools software (Bruker Daltonics) using a 0.5-Da 

fragment mass accuracy cutoff. 

DNA manipulations  

Restriction endonucleases, T4 DNA ligase, Antarctic phosphatase, PNK kinase, 

specific buffers and BSA used for DNA manipulation were purchased from New 

England Biolabs (Ipswich, MA) and used as recommended by the manufacturer. DNA 

was extracted from agarose gels using the QIAquick Gel Extraction Kit (Qiagen, 

Valencia, CA) as described by the manufacturer. PCR products were purified using the 

QIAquick PCR purification kit (Qiagen, Valencia, CA) as recommended by the 

manufacturer. Plasmid DNA was isolated from individual E. coli transformants that were 
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grown overnight in 3 ml of LB broth with ampicillin, using a QIAprep Spin Miniprep kit 

(Qiagen, Valencia, CA,) as described by the manufacturer.  

Agarose gels  

Agarose gels were prepared by dissolving agarose in 1X TAE buffer at 100ºC 

(Fisher Scientific, Pittsburgh, PA). Ethidium bromide was added to 0.1 μg/ml prior to 

pouring the gel. Generally, PCR products were resolved on 1% agarose gels, plasmids 

and gDNA on 0.7% agarose gels. 5X DNA loading dye (40% sucrose, 0.25% 

bromophenol blue and 0.25% Xylene cyanol) was added to the DNA solution in the ratio 

of 1:4 so as to reach 1X dye concentration. DNA was loaded on agarose gels and 

subjected to electrophoresis at about 5 volts/cm until the bromophenol blue had 

migrated roughly 3/4 of the gel length and then visualized, under UV light. DNA size 

was measured against the Hyperladder (BioLine, Taunton MA) series of DNA MW 

markers. 

Plasmid screening 

A quick-check method (Akada,1994) was used to screen colonies for plasmids 

with inserts. Each colony was resuspended in 100 μl of sterile water, to which 50 μl of 

TE saturated phenol: chloroform: (1:1) plus 10 μl loading dye (0.25% bromophenol blue 

and 40% glycerol) were added. The tubes were vortexed for 10 seconds and 

centrifuged for 3 minutes at 13,000 rpm. An aliquot of (10-15 μl) from each sample was 

loaded onto a 0.7% agarose/TAE gel and compared to a super-coiled DNA ladder 

(Invitrogen, Carlsbad, CA). 

Polymerase Chain Reaction (PCR) 
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PCR reactions were performed in a T-Gradient thermocycler (Whatman 

Biometra, Goettingen, Germany). Oligonucleotides used in this study are listed in Table 

2. These oligonucleotides were designed from 80α and SaPI1 sequences (GenBank 

DQ517338 and U93688, respectively) and were purchased from Integrated DNA 

Technologies (Coralville, IA). Oligonucleotides were reconstituted in HPLC grade water 

(Mallinckrodt Baker, Phillipsburg, NJ) to 1mM stock solution. Working solutions of 

oligonucleotides were prepared by diluting these stock solutions to 10 μM concentration. 

Standard PCR mixtures were set up on ice and prepared as follows: 1X Standard Taq 

Reaction Buffer, DNA template (2-50 pg plasmid or 50-500 ng genomic template), 

oligonucleotides at 0.5 μM final concentration, 200 µM dNTPs each (Invitrogen, 

Carlsbad, CA) and 1.25 units of Taq DNA Polymerase (NEB, Ipswich, MA) in a total 

reaction volume of 50 µl. PCR products used for sequencing and cloning were amplified 

with high fidelity Phusion DNA Polymerase (Finnzymes, Oy -Keilaranta 16 A, 02150 

Espoo, Finland.) PCR reactions were performed in MQ water with the following 

components: 1X DNA Phusion buffer, 0.2 mM each dNTP, 0.5 μM each forward and 

reverse oligonucleotides, DNA template 1 pg–10 ng per 50 μl reaction and DNA 

Phusion Polymerase (0.04 U/μl final concentration). Cycling conditions for PCR were as 

follows: Initial denaturation was performed at 98ºC for 30 seconds followed by 29 

repetitive cycles of the following operations: denaturation at 98ºC for 10 seconds, primer 

annealing at hybridization temperature (TM + 3) for 15 seconds and primer extension at 

72ºC for 20 seconds per kb of extension. A final extension at 72ºC for 5 minutes was 

performed after the final cycle and the reactions were chilled to 4ºC.  

Preparation of electrocompetent cells  
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Electrocompetent E. coli cells (Miller et al., 1995), (Seidman et al., 2001) were 

prepared from cultures grown in 250 ml LB (Difco, Franklin Lakes, NJ) at 37°C with 

shaking at 300 rpm to an OD600 of approximately 0.5–0.7. Cells were chilled on ice for 

~20 min. For all subsequent steps, the cells were kept as close to 0°C as possible. All 

containers were chilled in ice before adding cells. Cells were harvested and spun at 

4000 x g for 15 minutes at 4°C. The supernatant was carefully discarded and the pellet 

gently resuspended in 250 ml sterilized ice-cold 10% glycerol. The resuspended cells 

were again centrifuged at 4000 x g for 15 minutes at 4°C. The supernatant was again 

discarded and cells were resuspended in 125 ml of ice-cold 10% glycerol and 

centrifuged again at 4000 x g for 15 minutes at 4°C. An additional repetition of this step 

ensured maximum removal of salt and greatly helped to avoid the problem of arcing 

during electroporation. The pellet was resuspended in 10 ml ice-cold 10% glycerol and 

transferred to a 30 ml sterile Oakridge tube. The resuspended cells were centrifuged at 

4000 x g for 15 minutes at 4°C. The supernatant was carefully poured off and the cells 

were suspended in a final volume of 1ml of ice-cold 10% glycerol yielding a cell 

concentration of about 1–3 x 1010 cells/ml. This suspension was distributed in aliquots of 

50 µl and stored at -70 °C.  

Electrocompetent S. aureus cells were prepared from cultures grown in BHI at 

30°C with shaking at 250 rpm, to ~2 x 108 cells/ml. The cells were then chilled in an ice 

water bath for 15 min to arrest growth and harvested by centrifugation at 12,000 x g for 

15 min at 4 °C. The supernatant was carefully removed and the cell pellet was 

suspended in 500 ml of sterile, ice-cold water and centrifuged again at 12,000 x g for 15 

min at 4 °C; The cells were washed two more times in 500 ml of sterile, ice-cold water. 
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The cell pellet was suspended in 25 ml of sterile, ice-cold 10% glycerol and transferred 

to a 30 ml sterile Oakridge tube. The cells were pelleted by centrifugation at 12,000 x g 

for 15 min at 4°C and resuspended in 2ml final volume of 10% glycerol to a final 

concentration of about 1 x 1010 cells/ml. Cells were distributed in 50 µl aliquots into 

sterile 1.5 ml microfuge tubes and stored at -70 °C. 

Transformation of E. coli and S. aureus  

Ligation reactions (2 μl), or 0.5 μl of purified plasmid DNA, were added to 50 μl of 

electrocompetent E. coli cells previously thawed on ice. This mixture was transferred to 

a cold electroporation cuvette (Bio-Rad, Hercules, CA) with a gap length of 0.1 cm and 

pulsed one time using the MicroPulser (Bio-Rad, Hercules, CA) pre-set E. coli setting 

Ec1 (1.8 kV). 1 ml of SOC media (2% (wt/vol) tryptone, 0.5% (wt/vol) yeast extract, 85.5 

mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 20 mM glucose) warmed to 37ºC was 

immediately added to the cuvette and cells were gently but quickly resuspended using a 

1000 µl pipette. The resuspended cells were transferred to a 2ml microfuge tube and 

incubated for one hour at 37°C with shaking. Following this recovery period the cells 

were plated on LB plates with appropriate antibiotic selection.  

Plasmid DNA isolated as described above was used to transform S. aureus. 

Plasmid DNA (2 μl) was added to 50 μl aliquots of electrocompetent S. aureus and 

incubated on ice for 20 minutes. The mixture was then transferred to an electroporation 

cuvette with a gap length of 0.1 cm and pulsed one time using the MicroPulser (Bio-

Rad, Hercules, CA) pre-set S. aureus setting Sta (1.8 kV, 2.5 msec, 25 μF). Following 

electroporation, one ml of Brain Heart Infusion (BHI) broth (Remel, Lenexa, KS) was 

added immediately to the cuvette and this mixture was then transferred to a glass 
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culture tube. The antibiotic to be used for selection was added at a subinhibitory 

concentration (erythromycin = 0.05 μg/ml,) and the cells were incubated for 1.5–2 hours 

with shaking at 30°C. Aliquots (100 μl and 200 μl) were then spread on TSA plates 

supplemented with appropriate antibiotics and incubated at 30°C for 48 hours.  

Creation of deletion and insertion mutants by allelic exchange 

The strategy used for creating deletion and insertion mutants can be divided into 

the following steps: (1) Creation of the mutant allele using the technique of gene splicing 

by overlap extension (gene SOEing); (2) Cloning the mutant allele into appropriate 

restriction sites of shuttle plasmid pMAD; (3) Transforming E. coli with the pMAD 

derivative; (4) Isolation of plasmid from the E. coli strain and transforming appropriate S. 

aureus strain and (5) Allelic exchange. 

Mutant alleles for deletion  

Mutant alleles were generated using the strategy described by Horton 

(Horton,1995) (Horton et al., 1990). Four different oligonucleotides (Fig 4), a, b, c and d 

were designed in such a way that primers a and d hybridized at least 400 base pairs 

away upstream and downstream of flanking regions of the targeted gene. Primers a and 

d are called the flanking primers and have appropriate restriction sites at their 5’ ends 

for subsequent cloning. Oligonucleotides b and c, also known as the SOEing primers, 

complement each other at their 5’ ends and the Tm of this complementary sequence is 

not less than the Tm of the flanking primers a and d. Also, the Tm of the rest of the 3’ 

region of the SOEing primers b and c is comparable to the Tms of the flanking primers. 

PCR reactions A and B were performed with primer pairs a, b and c, d to obtain DNA  
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Figure 4. Schematic representation of gene SOEing reaction for generating 

mutant alleles with in-frame deletion 
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fragments A and B. These DNA fragments were subjected to electrophoresis on 

agarose gels and the DNA from appropriate bands was extracted using a gel extraction 

kit (Qiagen, Valencia, CA).The purified DNA was quantified, mixed in an equimolar ratio 

and used as template for PCR reaction C with flanking primers a and d. The DNA 

fragment C was gel extracted, digested with appropriate restriction endonucleases and 

cloned into corresponding restriction sites of the shuttle plasmid pMAD. 

Mutant alleles for insertion 

Mutant alleles for insertion were generated by using the same strategy as 

described above except that six different oligonucleotides, a, b, c, d, e and f were used 

(Fig 5). The oligonucleotides were designed in such a way that primers a and f 

hybridized at least 400 base pairs upstream and downstream of flanking regions of the 

targeted gene. Primers a and f are the flanking primers and have appropriate restriction 

sites at their 5’ end. Oligonucleotide pairs b and c, d and e complement each other at 

their 5’ ends and the Tm of the complementary part of their sequence is not less than 

the Tm of the flanking primers a and f. PCR reactions A, B and C were performed with 

primer pairs a-b, e-f and c-d to obtain DNA fragments A, B and C. These DNA 

fragments were subjected to electrophoresis on agarose gels and the DNA from 

appropriate bands was extracted using a gel extraction kit. The purified DNA was 

quantified, mixed in an equimolar ratio and used as template for PCR reaction D with 

flanking primers a and f. The DNA fragment D was gel extracted, digested with 

appropriate restriction endonuclease(s) and cloned into the shuttle plasmid pMAD. 
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Figure 5. Schematic representation of gene SOEing reaction for generating 
mutant alleles with insertion 
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Electrocompetent DH5α was transformed with the ligation mixture and plated on 

LB agar plates supplemented with 100µg/ml ampicillin. The plates were incubated 

overnight and single colonies were picked and restreaked on LB agar plates 

supplemented with 100 µg/ml ampicillin. 

Plasmid pPD11 was constructed as follows: Flanking DNA fragments of 1kb 

each were amplified by polymerase chain reaction (PCR) and ligated together. A region 

from orf 6 to the beginning of SaPI1 terS was amplified from SaPI1 tst tetM with 

primers SMT53 and SMT54 (Table 2), and a region from tetM to the end of SaPI1 terS 

was amplified with primers SMT51 and SMT52. The PCR products were digested with 

HindIII, ligated together and used as template for amplification with SMT51 and SMT54. 

After purification, the resulting PCR product was digested with NcoI and ligated with 

NcoI-digested pMAD. The resulting plasmid was introduced into E. coli DH5α by 

electroporation. 

Colonies were screened for plasmids with inserts using the quick check method. 

Plasmids were isolated and verified by sequencing. Plasmid DNA was then introduced 

into S. aureus by electroporation and the cells were plated on TSA plates supplemented 

with 5µg/ml erythromycin and 200µg/ml X-gal. 

Allelic exchange 

Allelic exchange was carried out using the methods described by Arnaud 

(Arnaud et al., 2004) A single blue colony carrying the appropriate pMAD derivative was 

picked from TSA plates supplemented with erythromycin (5µg/ml) and Xgal (200 µg/ml), 

transferred to TSB supplemented with erythromycin (5 µg/ml), and incubated overnight 

with shaking at 44°C to select for cointegration of the plasmid. The overnight culture 
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was diluted in fresh medium and grown for about 6 hours at 44°C with shaking. Serial 

dilutions were then prepared and plated on pre-warmed TSA supplemented with 

erythromycin and Xgal and incubated at 44°C for 48 hours. Several isolated blue 

colonies were then inoculated into TSB and incubated with shaking at 30°C overnight to 

resolve the cointegrate. The overnight culture was then diluted with fresh medium and 

allowed to grow at 30ºC for about 6 hours. This subculture was added to TSB and 

incubated overnight at 44ºC to cure cells of the plasmid. The overnight culture was 

again diluted in TSB and allowed to grow for an additional 6 hours at 44ºC. Serial 

dilutions were prepared and aliquots were spread on TSA plates supplemented with 

Xgal and incubated for 48 hours at 30°C. Several white colonies were streaked onto 

TSA plates supplemented with Xgal, and onto TSA supplemented with Xgal and 

erythromycin to screen for white colony phenotype and sensitivity to erythromycin, 

indicating loss of the plasmid. Colony PCR with Taq polymerase and appropriate 

flanking oligonucleotides was performed to screen for mutants that had  the appropriate 

deletion or insertion. Mutants were further examined for unwanted additional mutations 

by sequencing the amplicon of the entire region carried on the allelic exchange plasmid. 

Southern blotting 

Probe Construction 

Digoxigenin-11-2’-deoxy-uridine-5’-triphosphate (DIG-11-dUTP) (Roche Applied 

Science, Mannheim, Germany) labeled probes specific for 80α and SaPI1 were 

prepared for analysis of Southern blots. Dig-11-dUTP was randomly incorporated into 

the PCR product in place of dTTP. PCR conditions were the same as above for Taq 

except for the following changes: in place of the standard dNTP mix, a dig-dNTP mix 
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consisting of 0.2 mM each dATP, dCTP and dGTP, and 0.13 mM dTTP and 70 μM DIG-

11-dUTP was used in each PCR.  

Preparation of g-DNA 

Freshly prepared BHI media was inoculated with a previously grown overnight 

broth culture of a S. aureus strain at a ratio of 1:100 and incubated at 30ºC on an orbital 

shaker at 200 rpm. Cell growth was monitored using either the Klett reader until it 

reached an optical density (OD) of 0.6 (Klett = 50). Mitomycin C was added to terminate 

lysogeny. The culture was monitored for 1 hour and spun down to collect the cell pellet. 

The cells were resuspended in 1μl TES [10 mM Tris-HCl (pH 7.5),1 mM EDTA (pH 8.0), 

SDS(0.1% w/v)], RNaseA (20 µg/ml) and lysostaphin 0. 5 mg/mL. The resuspended 

cells were allowed to lyse in a waterbath for 1 hour at 37ºC. 20 μl 20% SDS was added 

and the mixture was further incubated for 30 minutes. 12 L (3M) NaOAc and 200 L 

phenol:chloroform:isoamyl alcohol (25:24:1) were added and the mixture was 

centrifuged at 14K for 5 minutes. The aqueous phase was collected in a fresh tube and 

2 volumes of 95% EtOH were added. The mixture was stored at -20ºC for at least 1 

hour. After a period of 1 hour, the mixture was centrifuged at 14k rpm for 5 min to pellet 

the DNA. Ethanol was carefully decanted from the tube. The DNA was rinsed again with 

70% ethanol (500μl) and spun again at 14k rpm for 5 minutes. The ethanol was 

carefully removed, and the DNA was air dried. The DNA was finally suspended in 20μl 

of water and resolved on 0.7% agarose gel.  

Southern blot transfer  

The gels were trimmed and photographed under UV light after staining with 

ethidium bromide. The resolved DNA was depurinated by incubating the gel in 0.25 N 
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HCl for 10 minutes, and then rinsed with distilled water. The gel was then soaked in a 

denaturation solution (1.5 M NaCl, 0.5 N NaOH) for 45 minutes. The gel was removed 

from the denaturation solution, rinsed with distilled water and soaked in a neutralization 

solution (1 M Tris-HCl pH 7.4, 1.5M NaCl) for 30 minutes. The gel was again rinsed in 

distilled water and soaked in fresh neutralization solution for 15 minutes. A positively 

charged nylon membrane (ICN, Irvine, CA or Roche Applied Science, Mannheim, 

Germany) and two pieces of Whatman 3MM paper were cut slightly larger than the gel. 

The nylon membrane was submerged in distilled water until it was completely wet and 

then transferred to 10XSSC buffer and allowed to equilibrate for five minutes. A 

reservoir tank filled with 10XSSC was assembled using a glass plate that was wrapped 

in Whatman 3MM paper. This paper served as a wick during the transfer. The gel was 

removed from the neutralization solution and placed on center of the wet Whatman 

3MM paper. The gel was then carefully surrounded with a parafilm barrier. The nylon 

membrane was then placed on top of the gel, followed by two pieces of Whatman 3MM 

paper wetted with 2XSSC. A stack of paper towels about 5 cm thick was placed on top 

of the Whatman 3MM paper followed by a glass plate and a weight of approximately 

500 g. Transfer by capillary action was allowed to proceed for 24 hours, after which the 

gel and nylon membrane were recovered. Agarose was removed from the nylon 

membrane by soaking the membrane for 15 minutes at room temperature in 6X SSC. 

The nylon membrane was then placed on Whatman 3MM paper saturated in 10X SSC 

and DNA was fixed to the membrane by UV-irradiation in a UV Stratalinker 1200 

(Stratagene, La Jolla, CA) at 120,000 μjoules/cm2. The gel was visualized under UV 

light to verify that DNA was transferred. 
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Hybridization and detection 

Reagents were prepared using the DIG Wash and Block Buffer Set (Roche 

Applied Science, Mannheim, Germany) that contains concentrated buffers used in 

hybridization and detection. The appropriate volume (20 ml/100 cm2
 nylon membrane) of 

hybridization buffer (5X SSC, 0.1%N-lauroyl sarcosine, 0.2% SDS and 1% blocking 

solution) was pre-warmed to the hybridization temperature (45°C) and placed into a 

hybridization bottle. The nylon membrane was placed into the bottle and incubated at 

40°C for 30 minutes with gentle agitation. The Dig-11-dUTP labeled probe (3 μl) was 

placed into a microcentrifuge tube with 50 μl of deionized water and boiled for 5 

minutes, then rapidly cooled on ice. The denatured probe was mixed with pre-warmed 

hybridization buffer (3.5 ml/100 cm2
 nylon membrane). The pre-hybridization solution 

was decanted and replaced with the hybridization-probe solution and incubated for 16 

hours at 45°C. After hybridization, the nylon membrane was washed two times for 5 

minutes at room temperature in a high salt buffer (2X SSC, 0.1% SDS) followed by 

washing two times for 15 minutes each at 65°C in a lower salt buffer (0.1X SSC, 0.1% 

SDS). After washes, the membrane was placed into a clean tray with 1X washing buffer 

(0.1 M maleic acid, 0.15 M NaCl pH 7.5, 0.3% (v/v) Tween20) for 5 minutes at room 

temperature with gentle agitation on an orbital platform. The solution was aspirated from 

the tray and replaced with 100 ml of 1X Blocking solution for 30 minutes with gentle 

agitation. Subsequently, the Blocking solution was replaced with (20 ml) of 1X Blocking 

solution containing Anti-digoxigenin-AP (75 mU/ml) and incubated for 30 minutes with 

gentle agitation. The antibody-containing solution was removed and the membrane was 

equilibrated with 20 ml of 1X Detection buffer for 5 minutes with gentle agitation. The 
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membrane was placed into an opened hybridization bag and 1 ml of CSPD working 

solution (diluted 1:100 with 1X Detection buffer) was applied to the membrane. The 

solution was spread evenly across the membrane by closing the hybridization bag and 

incubated at room temperature for 5 minutes. The excess liquid was squeezed from the 

bag, which was then sealed and incubated for 15 minutes at 37°C. The membrane was 

exposed to X-ray film (Kodak, Rochester, NY) and developed in an X-O-Mat (Kodak, 

Rochester, NY). 

Expression of proteins in E. coli 

Expression of 80α major capsid protein and scaffolding protein from pPD2 in E. 

coli strain BLR(DE3) (Invitrogen) was accomplished by induction with 0.5 mM IPTG at 

37 °C. The cells were harvested 2 h post induction, lysed by passage through an 

EmulsiFlex C3 high-pressure homogenizer (Avestin, Inc., Ottawa) and prepared for 

SDS-PAGE. 

Expression of proteins in S. aureus 

Overnight cultures of respective S. aureus strains containing pG164 derivatives 

were inoculated in freshly prepared Antibiotic Medium 3. The cells were allowed to grow 

till mid exponential phase (Klett 60). 0.5mM IPTG was added and cells were harvested 

2 hours post induction. Cells were pelleted by centrifuging at 4000 rpm for 10 minutes 

and resuspended in PBS buffer. Cells were then either mechanically disrupted by using 

a mini bead beater or boiled in XT reducing buffer (Biorad Hercules, CA) for 10 minutes 

and subjected to SDS-PAGE analysis  
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Polyacrylamide Gel Electrophoresis  

Protein samples were analyzed using the Criterion XT protein system (Biorad, 

Hercules, CA) and were separated on either pre-cast Bis-Tris 12% gels or 4-12% 

gradient gels (Biorad Hercules, CA ). 4X XT loading buffer was added to samples to 

achieve a 1X concentration and these samples were then heated for 10 minutes prior to 

gel loading. The proteins were separated under constant voltage at 200V for 50 minutes 

in 1X MOPS (Bio-Rad, Hercules, CA) running buffer. A Precision Plus Protein Standard 

dual color marker (10 kDa-250 kDa) (Bio-Rad, Hercules, CA) was run with samples to 

estimate the molecular weight of the protein. After electrophoresis, the gels were rinsed 

in deionized water three times for 5 minutes each and then stained with Bio-Safe™ 

Coomassie (Bio-Rad, Hercules, CA) followed by destaining in water overnight. The 

bands were visualized under visible light and images were taken using Alpha imager 

system. 
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Table 2. Oligonucleotides used in this study 

Primer Sequence (5′–3′) restriction sites indicated in bold 

pPD8 
PKD 9 GAG GAT CCG GTC GAA AAC AAG GAC TTT AGC GAT AGA G 
PKD 12 GAG GAT CCC AAT GAT TTC GGG CAT GTT ACC ACT CC 

PKD10 
ATG CCT CCG TTA ATT TTT AAT AAT TCT ATT TTC TTC CAT GAG ATA TAC CTC CAT TTA TAG 
TCT GTC 

PKD 11 ATG GAA GAA AAT AGA ATT ATT AAA AAT TAA CGG AGG CAT TTA AAT GGA ACA AAC 
pPD11 

SMT51 ACACCATGGGCATACAGATATTCTCTGGA 
SMT52 ACAAAGCTTGTGGATGATATACCGTTAGAG 
SMT53 ACAAAGCTTCGCTTGTTTTGCCGTTAA 
SMT54 ACACCATGGCAATATGCAGGAGATTTCAAG 

pPD14 
SMT110 ACAGGATCCGGAAGTATATTGTCGGGCAAC 
SMT113 ACAGGATCCATGAGTATGAGCCACTCGC 

PKD19 TCC TTA ATA TTC GAC GGT TAC CAT GCG TCT CGC 
PKD20 CGC ATG GTA ACC GTC GAA TAT TAA GGA GTG TTA AAA ATG CCG 

pPD17 
PKD45 AAG GAT CCA ACA CAG TTG AAC GTA ATA GTA TCG CA 
PKD48 AAG GAT CCT GTT TGT TCC ATT TAA ATG CCT CCG T 
PKD46 ATC AAT CAC CGC TTT TCA CAT CTC GCT TTA ACT CAT TCT CGA TTG CTT 
PKD47 AGA ATG AGT TAA AGC GAG ATG TGA AAA GCG GTG ATT GAT TTA AAA GTA AAG TTT 

pPD34 
PKD93 TAC ATA CTT TCA ATT TGG AAT TCA CAC ATC 
PKD94 CGC GGA TCC AGT ATC GCA GAA AAA GAG ACG TAT C 
PKD42 AAA ATG AAA ACT GAA TCG TAC CGT TAA AAA GAA AGG GTA ATT AAA TGG AAA CAA AAT 
PKD43 AAT TAC CCT TTC TTT TTA ACG GTA CGA TTC AGT TTT CAT TTT TAT CCC CTT 

pPD35 
PKD91 GAC GCG GAT CCT CGT GCA ATC TTA CTG TTT TCA ATT G 
PKD92 CAT GCC ATG GAC TGA ATC GTA CTT TAA AGA ATA CAA 
PKD38 GGT AAT TAA ATG GAA ACA AAA AGG ATT ATT AAA TAG CAA TGA TTG CCT ATC CAA 
PKD39 TCA TTG CTA TTT AAT AAT CCT TTT TGT TTC CAT TTA ATT ACC CTT TCT TTT TAA CGT 

pPD27 
PKD64 AAG GAT CCA TGG AGG CAG AAC CTT TTA TG 
PKD65 AAG GAT CCT ACT CTT TCG CAT ACA TTC GAT AGT TAT A 
PKD54 TAT ACC TCT CCC ATA TTC GCC ATT CAA TAT TCC TCC 
PKD55 ATG GCG AAT ATG GGA GAG GTA TAA AAA TAG GGC GTT A 

pPD36 
PKD-72 GGT TGG ATC CTT ATG CAA CAG CTC AAA CTG AAT TAT CTA 
PKD 97 TTA ATT ACC CTT TCT TTA ACT AAC TTG CCT TTA AAA AAC TTT ACT TTT AAA TC 
PKD 98 TTA AAG GCA AGT TAG TTA AAG AAA GGG TAA TTA AAT GGA AAC AAA ATA CG 
PKD-75 ATT TAA TTT ACT GTC ATA CAA CTA TTT AAT AAT CCT GTT TTG CTT AGC TAA ATT TTG 
PKD-76 CAA AAC AGG ATT ATT AAA TAG TTG TAT GAC AGT AAA TTA AAT GTT TGG AGG ATA CTA 
PKD-77 GGT TTG GAT CCC TGA ACG TAA TTG TTC CAG CTC T 

pPD37 
PKD-72 GGT TGG ATC CTT ATG CAA CAG CTC AAA CTG AAT TAT CTA 
PKD-73 ATC CCC TTT ACA CTT AAC TAA CTT GCC TTT AAA AAA CTT TAC TTT TAA ATC 
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PKD-74 TTT TTT AAA GGC AAG TTA GTT AAG TGT AAA GGG GAT AAA AAT GAA AAC TG 
PKD 99 ATT TAA TTT ACT GTC ATA CAA TTA ACG TTT TAA AAA CAA CTT GTT ATT GTG TTC GTA 
PKD 100 AAG TTG TTT TTA AAA CGT TAA TTG TAT GAC AGT AAA TTA AAT GTT TGG AGG ATA CTA 
PKD-77 GGT TTG GAT CCC TGA ACG TAA TTG TTC CAG CTC T 

pPD28 
PKD-72 GGT TGG ATC CTT ATG CAA CAG CTC AAA CTG AAT TAT CTA 
PKD-73 ATC CCC TTT ACA CTT AAC TAA CTT GCC TTT AAA AAA CTT TAC TTT TAA ATC 
PKD-74 TTT TTT AAA GGC AAG TTA GTT AAG TGT AAA GGG GAT AAA AAT GAA AAC TG 
PKD-75 ATT TAA TTT ACT GTC ATA CAA CTA TTT AAT AAT CCT GTT TTG CTT AGC TAA ATT TTG 
PKD-76 CAA AAC AGG ATT ATT AAA TAG TTG TAT GAC AGT AAA TTA AAT GTT TGG AGG ATA CTA 
PKD-77 GGT TTG GAT CCC TGA ACG TAA TTG TTC CAG CTC T 

pPD1 
SMT34 GACTCATATGGAACAAACACAAAAATTAAAAT 
SMT35 GACTGGATCCTTATTAAACTTCTCCTGGAACT 

pPD2 
SMT61 TCAGGGATCCGAAGGAGATATCTCATGGAAGAAAATAAACTTAAG 
SMT62 CTTCGTCGACTTAAATGCCTCCGTTAATTTTTAA 

pPD18 
PKD57 AAC TGC AGA ACG GAG GCA TTT AAA TGG AAC 
PKD58 AAC TCG AGA AGT CAG GCG CGC CAA TTG TTT ATT AAA CTT CTC CTG GAA CT 

pPD20 
PKD 78 CAC AGG ATC CAT GGA ACA AAC ACA AAA ATT AAA ATT AAA TTT GC 
PKD 58 AAC TCG AGA AGT CAG GCG CGC CAA TTG TTT ATT AAA CTT CTC CTG GAA CT  

pPD21 
PKD 79 CAC AGG ATC CAT GGA AGA AAA TAA ACT TAA GTT TAA TTT GCA A 
PKD 58 AAC TCG AGA AGT CAG GCG CGC CAA TTG TTT ATT AAA CTT CTC CTG GAA CT  

pPD22 
PKD 66 TTT TGG ATC CAT GTT AAA AGT AAA CGA ATT TGA AAC AGA TAC A 
PKD 67 AAA ACT GCA GTA ATT GTT TAT TAA ACT TCT CCT GGA ACT G 

pPD44 
PKD 86 GGC AAA GGC GCG CCA AGA AAG GGT AAT TAA ATG GAA ACA AAA TAC GA 
PKD 87 GGC AAC TCG AGT TGC TAT TTA ATA ATC CTG TTT TGC TTA GCT AAA TTT 

pPD45 
PKD-88 GGC AAA GGC GCG CCA AGG GGA TAA AAA TGA AAA CTG AAT CGT AC 
PKD 87 GGC AAC TCG AGT TAA CGT TTT AAA AAC AAC TTG TTA TTG TGT TCG 

pPD46 
PKD 88 GGC AAA GGC GCG CCA AGG GGA TAA AAA TGA AAA CTG AAT CGT AC 
PKD 87 GGC AAC TCG AGT TGC TAT TTA ATA ATC CTG TTT TGC TTA GCT AAA TTT 

pPD47 
PKD-88 GGC AAA GGC GCG CCA AGG GGA TAA AAA TGA AAA CTG AAT CGT AC 
PKD 85 GGC AAC TCG AGT TAC ACC ACT TTT ACA TAT GAA GAT TGG TG 

pPD51 
PKD-88 GGC AAA GGC GCG CCA AGG GGA TAA AAA TGA AAA CTG AAT CGT AC 
PKD 87 GGC AAC TCG AGT TAA CGT TTT AAA AAC AAC TTG TTA TTG TGT TCG 

pPD52 
PKD 88 GGC AAA GGC GCG CCA AGG GGA TAA AAA TGA AAA CTG AAT CGT AC 
PKD 85 GGC AAC TCG AGT TAC ACC ACT TTT ACA TAT GAA GAT TGG TG 
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Chapter 3 

The structural characteristics of 80α and SaPI1 capsids and 
procapsids 

Introduction 

All phages must, in order to propagate, exit their host and face the harsh outside 

environment. They need to protect their nucleic acid and also have a mechanism to 

infect their next host. The nucleic acid is packaged in a proteinaceous coat that is stable 

enough to withstand the rigors of the outside environment, which include pH changes, 

extremes of temperature, salinity, pressure and radiation levels. This protein coat is a 

macromolecular assembly of smaller subunits known as capsid proteins encoded by a 

relatively short nucleic acid sequence and can encapsidate a relatively large volume of 

nucleic acid. This strategy of using assembly of multimeric capsid proteins circumvents 

the problem of encoding large capsid subunits and thereby helps the phage maintain 

genetic economy. Of the 5 known platonic solids in nature, the icosahedron generates 

the maximum enclosed volume for shells comprised of a given size subunit (Caspar et 

al., 1962) and hence it is not surprising that most phages have shells that conform to 

icosahedral symmetry. The discussion in this chapter is limited only to structural 

characteristics of icosahedra since both 80α and SaPI particles have isometric 

icosahedral symmetries. 
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The icosahedron 

An icosahedron is an isometric structure with 12 pentagonal vertices and 20 

identical equilateral triangular faces related by two-, three-, and fivefold axes of 

rotational symmetry (Fig 6.a). Any regular icosahedron has six five-fold axes that pass 

through the twelve vertices, ten threefold axes that pass through the centroids of twenty 

equilateral triangular faces and fifteen twofold axes through the edges. Thus this 

defined set of symmetry elements, belongs to the icosahedral symmetry point group (Ih) 

(5 3 2) and generates 60 identical repeat units. This point group can be used to 

describe any icosahedral structure. Application of these symmetry elements to any 

subunit that does not lie on a symmetry axis causes it to be repeated 60 times in the 

complete structure. The asymmetric unit (Fig 6.b) of an icosahedron is defined as the 

wedge-shaped volume that extends from the icosahedron’s center along edges formed 

by a threefold axis and two adjacent fivefold axes (Baker et al., 1999). The simplest 

icosahedral structure is the one that has 60 identical subunits that exist in a structurally 

identical environment. However, construction of a capsid based on such a simple 

icosahedral design severely restricts the interior volume available for packaging the 

nucleic acid genome. In fact, most icosahedral capsids are composed of more than 60 

subunits and these subunits cannot have identical environments. Caspar and Klug in 

1962 put forth two important concepts, namely the theory of quasi–equivalence and the 

concept of triangulation numbers (Caspar et al., 1962). They suggested that the “shell is 

held together by the same types of bonds throughout, but that these bonds may be 

deformed in slightly different ways in the different, non-symmetry related environments. 

Molecular structures are not built to conform to exact mathematical concepts but rather 
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to satisfy the condition that the system be in a minimum energy configuration.” In other 

words, shells comprised of more than 60 subunits would be formed from chemically 

equivalent subunits, but with slight changes in their bonding. 

Triangulation numbers 

The second important concept introduced by Caspar and Klug to explain 

structures of icosahedral shells was that of triangulation numbers (Caspar et al., 1962). 

Triangulation number is a geometric and abstract concept that refers to the organization 

of icosahedral structures and does not necessarily strictly correspond to the protein 

subunits of the virus. An isometric shell can be built by starting with a flat array of 

hexagons which is defined by a hexagonal coordinate system with two oblique axes h 

and k (Goldberg,1937; Luczak et al., 1976) (Fig 7a). All internal bonds are identical in 

environment in this flat hexagonal net. In order to generate a regular closed structure 

out of this flat net, one needs to curve it at specific places. This can be done by 

converting some of the hexagons to pentagons in this array. Changing hexagons to 

pentagons not only introduces curvature but also introduces the concept of quasi-

equivalence. These pentagons are interchanged with specific hexagons governed by 

the triangulation number (T) and related to the equation: T = h2 + k2 + hk where h, k are 

the coordinates of the next pentagon on the hexagonal coordinate system. Thus for 

obtaining an icosahedral structure with a triangulation number T=4, the hexagon with 

coordinates (2,0) at its center would be converted to a pentagon (Fig 7b). Similarly, for 

T=7, converting either of the hexagons with coordinates (2,1) or (1,2) to pentagons 

would yield icosahedral structures with T=7l (Fig 7c) or T=7d, respectively. In other  
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Figure 6. Axes of symmetry and asymmetric unit of an icosahedral structure 
 

(A) A schematic representation of an icosahedral structure with two fold, three fold and 

fivefold axes of symmetry. The three fold axis is shown by a triangle; the twofold axis 

with an oval and the five- fold axis with a pentagon. 

(B) An icosahedral structure showing an asymmetric unit defined by a white triangle 

which is bounded by the lines joining adjacent fivefold and three fold positions. The 

numbers, 2,3 and 5, indicate the corresponding axes of symmetry. 
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Figure 7. Geometric principles of constructing icosahedral lattices of defined 
triangulation number. 
 

(A) hexagonal coordinate system showing an origin and two oblique axes defined by h 

and k. (B and C) Relevant hexagons that would be converted to pentagons for T=4 and 

T=7 are shown in green.  
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words, the triangulation number denotes the surface area of one triangular face of the 

icosahedral structure. The number of quasiequivalent environments increases as the 

triangulation number increases. For example, a T=4 capsid has four different 

environments and a capsid with T=7 has seven. Also, though not strictly true, the 

triangulation number indicates the number of subunits present in the capsid and is given 

by the relation: number of subunits, N= 60(T).  

Rationale 

In order to understand why smaller sized capsids are predominantly formed in 

the presence of SaPI1, it was necessary to investigate the structural characteristics of 

both types of particles and study their similarities and differences. Insight into their 

shape, size and icosahedral symmetry would yield valuable information about the 

principles governing the self-assembly process, maturation and the structure of capsids. 

Three dimensional reconstructions of icosahedral viruses from cryo-electron 

micrographs are now being increasingly used to complement X-ray crystallographic 

studies (Tang et al., 2002; Rossmann et al., 2005) and sometimes even to supplement 

them (Topf et al., 2008) to yield valuable information about the triangulation numbers, 

the number of subunits in the capsid shell and information concerning the alteration of 

subunit conformations and their interactions in the structure. Extensive studies at 

nanometer resolution levels have been carried out in HK97 (Conway et al., 1995; Lata 

et al., 2000; Gertsman et al., 2009), P22 (Nemecek et al., 2007; Lander et al., 2009; 

Teschke et al., 2010; Chen et al., 2011; Tang et al., 2011) and T4 (Kanamaru et al., 

2004; Kostyuchenko et al., 2005; Leiman et al., 2010; Luque et al., 2010; Rao et al., 

2010) that have generated a wealth of information regarding the mechanisms involved 
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in self-assembly processes, protein-protein interactions and conformational changes in 

the tertiary structures of the capsid protein during the maturation process. We wanted to 

carry out similar studies with 80α and SaPI1 capsids and procapsids in order to 

understand the mechanisms involved in capsid size redirection. 

Generation of 80α and SaPI1 procapsids and capsids 

In Caudovirales, the first stage of the capsid self-assembly pathway is the 

formation of a capsid precursor. This capsid precursor, also known as a procapsid, is 

formed by co-polymerization of multiple copies of major capsid and scaffold proteins 

with a dodecameric portal complex at one of its vertices. Multiple copies of scaffold 

proteins direct the polymerization of major capsid protein to form a properly 

dimensioned shell. The portal complex, usually a dodecamer of portal protein subunits, 

occupies one of the five-fold vertices of the procapsid and ultimately serves as a route 

for entry and exit of DNA into the capsid and also as a connector between the head and 

tail. The procapsid is a transient intermediate and undergoes rapid maturation through a 

series of steps. For example, in a study done on phage HK97 the half-life of procapsids 

was found to be approximately 30 seconds (Lata et al., 2000). The process of 

maturation involves scaffolding protein removal, usually through its proteolytic cleavage. 

Proteins that are only transiently involved in the self-assembly process would be 

completely missed during our analysis on mature particles. Therefore we wanted to 

analyze and compare the protein composition of procapsids of both sizes by SDS 

PAGE and mass spectroscopy. Since procapsids are transient intermediates and their 

maturation is highly efficient, isolation of procapsids at significant levels posed a 

technical problem. Arrest of the self-assembly process at the procapsid stage, in theory, 
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could be achieved by disrupting one of the maturation steps. Since procapsid 

maturation is tightly linked to DNA packaging (Earnshaw et al., 1980), the procapsid 

stage could also be arrested by mutations affecting DNA packaging. Thus in theory, 

mutations in large terminase or small terminase genes would affect DNA packaging and 

arrest the self-assembly process at the procapsid stage. We created mutants defective 

in DNA packing by constructing in-frame deletions of the phage and SaPI1 small 

terminase subunits, namely ST24 and ST37 (Poliakov et al., 2008). ST24 is a strain 

containing an 80α prophage with its terS deleted while ST37 contains a wt 80α 

prophage and SaPI1 with its terS deleted. We found that induction of strain ST37 did 

not yield enough SaPI1 procapsids for detection, due to residual nonspecific packaging 

caused by 80α TerS, and hence we created a new strain, ST63, with both the phage 

and SaPI1 small terminase subunits deleted. Procapsids were purified by equilibrium 

sedimentation on CsCl gradients, as described in Materials and Methods, and then 

further purified by velocity sedimentation in sucrose gradients and used for analysis by 

electron microscopy and mass spectrometry. 

Results 

SDS-PAGE analysis of sucrose gradient fractions 

80α and SaPI1 procapsid production was induced in strains ST24 and ST37 

respectively, and procapsids were purified on CsCl gradients followed by sucrose 

gradients as described previously. Unlike mature virions, procapsids cannot be 

separated from tails and other proteins only by equilibrium sedimentation. SDS-PAGE 

analysis of procapsids generated from the lysogenic 80α ΔterS mutant strain ST24 and  
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Figure 8. SDS-PAGE of sucrose-gradient-separated procapsids 
 

80α (a) and SaPI1 (b) procapsids. Fraction numbers (1-ml fractions) and the direction of 

sedimentation (arrow) are indicated. M, marker; molecular mass, as indicated (kDa). 

The positions of the capsid protein (CP), major tail protein (TP) and scaffolding protein 

(SP) are indicated by arrows, while the triangles indicate fractions that were pooled and 

used for cryo-EM and MS analyses. 

 

Reprinted from J Mol Biol. 380 (3) Poliakov A., Chang J.R., Spilman M.S., Damle P.K., 

Christie G.E., Mobley J.A., and Dokland T. Capsid size determination by 

Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of 

SaPI1 proteins into procapsids, 465-475, (2008) with permission from Elsevier 
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fractionated on sucrose gradients showed that tail proteins sedimented more slowly and 

were found in fractions F3 and F4 (Fig. 8a), while the major capsid and scaffolding 

proteins were found mainly in several faster sedimenting fractions (F5–F8). Comparison 

of band densities of scaffold and major capsid in the SDS-PAGE gel showed that the 

molar ratio of scaffolding to capsid protein (SP:CP) varies between 0.33 (lane 8) and 

0.76 (lane 6). A negligible amount of soluble protein was seen at the top of the gradient, 

suggesting that structural proteins were efficiently incorporated into stable procapsids. 

The fractions (F6–F8) containing mainly capsid and scaffolding protein were pooled, 

concentrated by pelleting and observed by cryo-EM (Fig. 9 and 10).  

Structural characteristics of 80α and SaPI1 procapsids 

EM analysis of 80α and SaPI1 sucrose gradient purified samples showed the 

presence of particles that were distinctly different than the mature virions. The particles 

were smaller in size than their respective mature capsids. They also had a more 

rounded shape, thicker walls and an internal core consisting of radial segments, 

consistent with features of other bacteriophage procapsids. The formation of procapsids 

in the terS mutants clearly established that packaging is tightly linked to capsid 

maturation and blocking the packaging function also blocks capsid maturation. The 

internal core of both procapsids consisted of radial segments approximately 12–14nm 

long (Fig 9b), which would correspond to 80–100 residues of an α-helix. Mature 80α 

scaffold has193 amino acids and is predicted to be predominantly α-helical, like other 

known scaffolding proteins. It could presumably, like P22 scaffold, interact with the 

major capsid protein through both its termini (Chen et al., 2011). 
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80α capsids 

Cryo-electron microscopy and 3-D reconstruction were done in the laboratory of 

our collaborator, Dr. Terje Dokland (Poliakov et al., 2008; Spilman et al., 2011). 80α 

virions have capsids with 57 nm diameter (side to side) and 63 nm diameter (vertex to 

vertex) and with 190 nm long flexuous tails (Figs 9 and 10). The star-shaped, 6-fold 

symmetric baseplates can also be seen. The interior of the capsids have a punctuate 

appearance with a spacing of 2.5nm that is due to the closely packed DNA inside. 

Symmetric 3-D reconstruction of 80α capsids to a resolution of 1.02 nm shows that 80α 

has a T=7l icosahedral symmetry corresponding to 420 copies of 80α gp47 organized 

into 60 hexamers that are located on the flat triangular faces of the icosahedra and 12 

pentamers located on the icosahedral fivefold vertices (Fig 11a and b). In an 

asymmetric virion, one of the pentamers is replaced by a portal complex. The 

icosahedral symmetry of T=7 suggests that gp47 exists in seven quasi-equivalent 

environments, as shown schematically in Fig 11. The capsomers seem to interact 

through three types of trivalent contacts that are referred to as type1 (EEE), type 2 

(ABG), and type 3 (CDF) (Fig 12). Much of the capsid density is clustered in distinct 

trefoils delineated by 2-3 nm holes at the contact points. The hexameric connections are 

less extensive and characterized by a hole with a 1.2 nm diameter in the center. The 

cross-section of the capsid shows that the shell is, on average, 2.4 nm thick and has a 

flat appearance except at the fivefold vertices (Fig 11c) and there are 2 nm holes at the 

2-fold axes. Furthermore, at least eight concentric layers of density with a spacing of 2.5 

nm are visible inside the shell. This density corresponds to the packed DNA.  
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Figure 9. EM analysis of 80α particles 
 

(a) Cryo-EM of sucrose gradient-purified 80α procapsids. Inset: A 2× magnified view of 

one procapsid, with dimensions of the shell and the inner core indicated.  

(b) Cryo-EM of CsCl-purified 80α virions. The 2-nm spacing of the internal DNA is 

clearly visible. One thin-walled empty capsid is also shown (inset). 

(c) Negatively stained CsCl-purified 80α procapsid fraction containing a mixture of 

procapsids, tails and procapsids with attached tails.  

(d) Cryo-EM of sucrose gradient- purified SaPI1 procapsids. Inset: One of the about 5% 

80α-sized procapsids found in the SaPI1 procapsid sample. The scale bar represents 

100 nm. 

Reprinted from J Mol Biol. 380 (3) Poliakov A., Chang J.R., Spilman M.S., Damle P.K., 

Christie G.E., Mobley J.A., and Dokland T. Capsid size determination by 

Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of 

SaPI1 proteins into procapsids, 465-475, (2008) with permission from Elsevier 

 
  



www.manaraa.com

 

81 
 

 

  



www.manaraa.com

 

82 
 

Figure 10. Cryo-electron micrographs of 80α. 
 

(a) Virions and (b) procapsids. A baseplate seen end-on is indicated (arrow), showing 

the hexagonal star-like structure with six appendages. The scale bar represents 

100 nm. 

Reprinted from J Mol Biol. 380 (3) Poliakov A., Chang J.R., Spilman M.S., Damle P.K., 

Christie G.E., Mobley J.A., and Dokland T. Capsid size determination by 

Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of 

SaPI1 proteins into procapsids, 465-475, (2008) with permission from Elsevier 
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Figure 11. Icosahedral reconstructions of 80α capsids. 
 

(a) Schematic diagram showing one triangular face (large triangle) delimited by three 5-

fold and three 2-fold axes (pentagons and ovals, respectively). The icosahedral 

threefold (filled triangle) is in the center of the face. Each gp47 subunit is shown as a 

sphinxlike shape, representing the A domain, P domain, E loop, and P loop as shown in 

the inset. The seven gp47 subunits corresponding to one asymmetric unit are colored: 

A, red; B, blue; C, teal; D, cyan; E, green; F, yellow; G, orange. The triangular face has 

an A5 pentamer at each corner and includes three neighboring BCDEFG hexamers. 

One neighboring hexamer on an adjacent face is also drawn (gray lettering) to show the 

three different types of trivalent subunit interactions (numbered triangles). (b) Isosurface 

representation of the 80α virion reconstruction, viewed down a 3-fold axis and rendered 

at a cutoff level consistent with the calculated mass of the capsid. The capsid is radially 

colored from red (center of capsid) to blue (farthest from center). One icosahedral face 

corresponding to the triangle in (a) is shown, with 2-fold, 3-fold, and 5-fold symmetry 

axes indicated. The A, B, C, D, E, F, and G subunits in one asymmetric unit are marked. 

(c) Central section through the virion reconstruction in grayscale representation from 

white (lowest density) to black (highest density). The arrows indicate the 2-fold axes. 

Pertinent dimensions are indicated. (d) Isosurface representation of the 80α procapsid 

reconstruction, viewed, rendered, and labeled as in (b). (e) Central section through the 

procapsid reconstruction, viewed and labeled as in (c). 

 

Reprinted from J Mol Biol. 405 (3) Spilman M.S., Dearborn A.D., Chang J.R., Damle 

P.K., Christie G.E., and Dokland T. (2011) A conformational switch involved in 

maturation of Staphylococcus aureus bacteriophage 80 alpha capsids., 863-876, with 

permission from Elsevier 
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Figure 12. Capsid protein interactions.  

Ribbon diagrams of the gp47 model are shown fitted into the capsid electron density in 

the virion [(a)–(c)] and in the procapsid [(d)–(f)]. (a and d) Asymmetric unit, comprising 

one-fifth of a pentamer and a BCDEFG hexamer; (b and e) A5 pentamer and (c and f) 

the type 1 (EEE) trimer. Subunits are colored as in Fig. 11a. 

Reprinted from J Mol Biol. 405 (3) Spilman M.S., Dearborn A.D., Chang J.R., Damle 

P.K., Christie G.E., and Dokland T. (2011) A conformational switch involved in 

maturation of Staphylococcus aureus bacteriophage 80 alpha capsids., 863-876, with 

permission from Elsevier 
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80α procapsids 

80α procapsids are rounded particles 51 nm in diameter. The procapsid shells 

are about 4nm in thickness and have an inner core 37 nm in diameter that consists of 

punctuate density corresponding to scaffolding protein, gp46. The inner core is 

separated from the shell by a gap of approximately 2nm. Only a small number of 

spontaneously expanded shells were found, suggesting that maturation of capsids is 

tightly linked to DNA packaging in the procapsid. Symmetric reconstruction of the 80α 

procapsid to a resolution of 0.88 nm reveals a roughly spherical shell with an 

icosahedral symmetry of T=7l. The pentamers and hexamers in the procapsid protrude 

more than those of the mature capsid (Fig 11d). The hexamers have an elongated and 

skewed appearance as is found in procapsids of other phages (Dokland et al., 1993; 

Conway et al., 1995; Parent et al., 2010). The protein subunits are closely packed 

together in the procapsids compared to what was seen in the capsids and appear to 

have more extensive intra-capsomer contacts. The hexamers and pentamers interact 

through trivalent connections at the icosahedral and quasi-threefold axes. In contrast to 

the capsids, the hexamers in the procapsids are completely closed while there is a hole 

of 1 nm in the center of the pentamers. A cross-section of the procapsid reveals that the 

serrated appearance of the shell results from tilting of the gp47 subunits relative to the 

surface of the shell (Fig 11e). The central section also shows a diffuse central density 

with a diameter of 36 nm that is assumed to represent the scaffolding core. The capsid 

and core are separated by a 2.5 -nm gap (Fig 11e), suggesting that either there is little 

direct interaction between the two or that the scaffolding protein is disordered in this 

region. 
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SaPI1 capsids 

SaPI1 virions have capsids with a 47 nm-diameter and tails similar to those of 

80α particles in length and morphology. The interior of the capsids has a punctuate 

appearance due to the closely packed DNA inside. Symmetric 3-D reconstruction of 

SaPI1 capsids to a resolution of 1.02 nm shows that SaPI1 has a T=4 icosahedral 

symmetry with 240 copies of 80α gp47 organized into 30 hexamers that are located on 

two adjacent flat triangular faces of the icosahedron in such a way that the sixfold axis 

of the hexamer coincides with the twofold axis of the icosahedron, and 12 pentamers 

located on the icosahedral fivefold vertices. (Fig 13). The icosahedral symmetry of T=4 

suggests that gp47 exists in four quasi-equivalent environments as shown schematically 

in Fig 13. The hexamers and pentamers interact via two types of trivalent connections, a 

type 1 (CCC) contact at the icosahedral twofold axis, and a type 2 (ABD) contact formed 

between one pentamer and two hexamers (Fig. 13). As in 80α mature capsids, density 

in mature SaPI particles is also clustered in distinct trefoils delineated by holes at the 

contact points. The cross-section of the capsid shows that the shell is on average 2.4 

nm thick and has a flat appearance except at the fivefold vertices  

SaPI1 procapsids 

SaPI1 procapsids were produced from terSSaPI1 mutant 80α lysogenic strain 

ST37 and later on from terSSaPI1 mutant 80αterS lysogenic strain ST63. The particles 

were isolated by procedures described above. 
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Figure 13. The SaPI1 procapsid. 
 

(a) Cryo-electron micrograph of SaPI1 procapsids (ST63),showing a typical field of 

particles used for reconstruction. Scale bar, 100 nm. (b) Outside view of the SaPI1 

procapsid in isosurface representation, colored radially from the center (red to blue). 

The large triangle represents one icosahedral face, with the fivefold, threefold and 

twofold symmetry axes indicated (pentagons, triangle and ovals, respectively). Subunits 

A, B, C and D of one asymmetric unit are labeled. (c) Schematic diagram showing the 

triangular face from (b).The four subunits (A, B, C and D) in one asymmetric unit are 

colored red, blue, green and yellow, respectively. Type 1 and 2 trimers are indicated by 

the filled and open triangles, respectively. The large ovals represent the threefold-

associated (pink) and fivefold-associated (purple) gp6 dimers on the inside of the shell. 

(d) Inner surface of procapsid, colored radially from the center (red to blue). (e) A 

magnified view of a portion of the inside of a procapsid (f) Outside view of SaPI1 capsid 

in isosurface representation, colored radially from the center (red to blue). The large 

triangle represents one icosahedral face with the fivefold, three fold and twofold 

symmetry axes indicated by pentagons, triangles and ovals, respectively. The subunits 

of one asymmetric unit are labeled A, B, C and D. 
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 SDS-PAGE analysis of sucrose fractions showed a large amount of scaffold and 

major capsid proteins in fraction F1, indicating that either these proteins remained 

unassembled or that SaPI1 procapsids are relatively unstable. Fractions F2 and F3, like 

80α procapsid fractions, contained predominantly tail proteins and fractions F4 to F6 

contained scaffolding and major capsid proteins. The ratio of scaffolding to major capsid 

protein was approximately 0.2 which is lower than the ratio observed in 80α procapsids. 

More than half of the particles had expanded, thin walled shells and lacked a scaffold 

core, suggesting that either SaPI1 procapsids are unstable and liable to spontaneous 

expansion or that mature SaPI1 capsids that had lost their DNA during the CsCl 

gradient centrifugation had a similar sedimentation coefficient as SaPI1 procapsids and 

hence had co-sedimented with them. SaPI1 particles generated from strain ST37 also 

yielded a higher density band during equilibrium sedimentation in CsCl. Cryo-EM 

examination of particles from this band revealed that most of them are smaller sized 

capsids filled predominantly with DNA and about 5% of them were normal sized mature 

capsid particles. Thus some of the empty expanded shells observed in the sucrose 

gradient purified fraction could be attributed to loss of DNA. 

Symmetric 3-D reconstruction of SaPI1 procapsids to a resolution of 1.0 nm 

shows that they have a spherical morphology with a diameter of 39 nm and with T=4 

icosahedral symmetry. There are 240 copies of gp47 in the capsid arranged as 

pentamers and hexamers. These 240 copies are found in four different environments, 

termed A, B, C and D. The capsid protein is thus clustered into twelve A5 pentamers 

located at the fivefold vertices and thirty (BCD)2 hexamers that are located on the 

icosahedral twofold axes in such a way that the sixfold axis of symmetry of the 
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hexamers coincides with the twofold axis of the icosahedron. The hexamers and 

pentamers interact via two types of trivalent connections, a type 1 (CCC) contact at the 

icosahedral threefold axis, and a type 2 (ABD) contact formed between one pentamer 

and two hexamers. There are no additional features that could be attributed to a Sid-like 

external scaffold on the exterior shell of the SaPI1 procapsid similar to those seen on 

P4 procapsids. The interior of SaPI1 procapsids however, unlike the 80α procapsids, 

has 120 nm long finger-like densities that protrude from the inner surface to the center 

of the procapsid. The density of the finger-like projections is well defined, indicating that 

the protein is well ordered. 

 80α major capsid protein has an HK97 like fold 

Crystallographic studies with an extensively studied E. coli phage, HK97, 

revealed a unique fold in its major capsid protein, gp5 (Gan et al., 2006). This fold has 

been subsequently found in all Caudovirales studied thus far, including P22 and ε15. 

Studies with HK97 procapsids have revealed that major conformational changes in the 

major capsid protein occur during maturation of procapsids, resulting in thin, 

angularized and expanded shells of the mature virions. HK97 gp5 was found as a close 

match to the 80α capsid protein based on secondary structure similarity as shown in 

Fig. 15. Therefore, we modeled 80α gp47 using HK97 gp5 as a template and fitted the 

model on our cryo-EMs. Further refining was done to obtain the optimal conformation 

for gp47. 

.  
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Figure 14. Comparison of Icosahedral reconstructions of 80α and SaPI1 capsids 
and procapsids. 
The top two panels show reconstruction images for 80α procapsid and capsid 
respectively. The procapsid structure was obtained by imaging particles isolated from 
an 80α terS mutant strain ST24. The bottom panel shows reconstruction images of 
SaPI1 procapsid and capsid. SaPI1 particles were obtained from a SaPI1 positive 80α 
orf44 mutant strain ST65. The procapsids were obtained from terSSaPI1 and terS80α 
double mutant strain ST63. 
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Molecular modeling of gp47 was carried out using two different programs 

namely, I-TASSER and Genthreader (Jones, 1999; Zhang, 2009). Both programs 

yielded similar results using HK97 gp5 as a template 

The salient features of the structural model of gp47, based on HK97 gp5 

illustrated in Fig. 16, are as follows: The HK97-like fold is a unique fold consisting of 

mixed α/β structure and organized into two compact, spatially distinct domains that are 

not sequence contiguous, namely the A and P domains, and two extensions, namely 

the N-arm and E-loop. The axial domain (A domain) is near the fivefold and quasi 

sixfold symmetry axes, and the peripheral domain (P domain) along with extensions (N-

arm and E-loop), occupy the region between adjacent quasi-threefold axes. The 

domains A and P together give this fold an L-shape. An additional feature not seen in 

HK97 gp5 is the presence of a P-loop that consists of 13 residues and inserts into the β 

sheets of the P domain.  

A domain  

The A domain includes residues 163–254 and 301–324 of gp47 and features two 

α helices (α5 and α6) and a three β sheets consisting of β3, β6, and β11 that could be 

confidently fitted into corresponding density in the map. β11 is generated by the C-

terminal arm. The remainder of the A domain could not be assigned any secondary 

structure and is modeled as loops due to either flexibility or limited resolution of 

reconstruction. 
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Figure. 15. Sequence and secondary structure of 80α gp47 and HK97 gp5.  

The alignment was made by I-TASSER and edited according to the final model. Filled 

boxes show sequence identity, while open boxes show residues that share 

physicochemical properties, as defined in the ESPript program. The gp47 sequence 

starts at Ala15, after the maturation cleavage site. The sequences corresponding to the 

N-arm, E loop, P domain, and A domain are indicated. The secondary-structure 

elements of gp47 according to the final model are shown as spirals (α helices) and 

arrows (β strands) above the alignment. The numbering of the α helices follows that of 

HK97. The asterisk indicates the kink-forming Pro132 residue in α3. 

Reprinted from J Mol Biol. 405 (3) Spilman M.S., Dearborn A.D., Chang J.R., Damle 

P.K., Christie G.E., and Dokland T. (2011) A conformational switch involved in 

maturation of Staphylococcus aureus bacteriophage 80 alpha capsids., 863-876, with 

permission from Elsevier 
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Figure 16. Modeling of gp47.  

(a) Ribbon representation of the gp47 (subunit B) model in the 80α virion, colored 

according to structural domains (red, N-arm; yellow, E loop; green, P domain; blue, A 

domain) and superimposed on HK97 gp5 (PDB ID: 1OHG) in gray. (b) Ribbon diagram 

of gp47 fitted into corresponding density from the 80α virion reconstruction. (c) 

Superposition of the models for the seven nonequivalent subunits in the 80α virion, 

colored as in Fig 11a. (d) Ribbon representation of the gp47 (subunit B) procapsid 

model, superimposed on the HK97 gp5 procapsid structure (PDB ID: 3E8K) and colored 

as in (a). (e) The gp47 model fitted into the 80α procapsid reconstruction. (f) 

Superposition of the seven nonequivalent subunits in the procapsid. 

Reprinted from J Mol Biol. 405 (3) Spilman M.S., Dearborn A.D., Chang J.R., Damle 

P.K., Christie G.E., and Dokland T. (2011) A conformational switch involved in 

maturation of Staphylococcus aureus bacteriophage 80 alpha capsids., 863-876, with 

permission from Elsevier 
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P domain  

The P domain consists of a prominent spine helix (α3) composed of residues 

127–150 of gp47, a shorter α2 helix composed of residues 117–124 and three stranded 

β sheets namely β2, β7 and β10. β2 is contiguous with the E-loop while the two strands 

β7 and β10 follow reentry of the sequence into the P domain from the A domain The 

spine helix α3 has a proline residue at position 132, which is not present in HK97, P22, 

or ε15, causing the spine helix to be kinked at an angle of 53°. The spine helices in 

these other bacteriophages are comparatively straight. There is a loop immediately 

following the spine helix that includes a short helix (α4) and that acts as a hinge 

between the A domain and the P domain. 

P loop  

An additional loop not originally found in the HK97 gp5 structure is a 12 residue 

hairpin loop composed of residues 276–287 that inserts into the β-sheets of the P 

domain. 

E loop  

The E loop in gp47 is made up of β1 and β2 sheets composed of residues 70–

104 and is of the same length as in HK97. 

 N-arm  

The N-arm consists of residues 15–60 of gp47 and corresponds to the extended 

N-terminal “N-arm” (residues 104–132) of gp5. In HK97, this arm extends from the body 
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of the P domain and makes twofold contacts with the corresponding arm from an 

adjacent capsomer. However, in the 80α virion reconstruction, there was no density 

corresponding to this sequence 

Discussion 

3D reconstructions from the cryoelectron images of 80α and SaPI1 capsids and 

procapsids confirm that they have icosahedral symmetries corresponding to 

triangulation numbers T=7l and T=4, respectively, which is also reflected in the 

difference in their sizes. The 80α shell is composed of 420 subunits while the SaPI1 

shell is made of 240 subunits. Moreover, the major capsid protein exists in seven quasi-

equivalent conformations in the 80α capsid and in four different quasi-equivalent states 

in SaPI1 particles, pointing towards the conformational flexibility of this protein. These 

seven nonequivalent states are reflected in the differences in the conformational states 

of gp47 when flexibly fitted into an 80α cryo-electron density map (Spilman et al., 2011). 

Since the HK97-like capsid fold has been found in all Caudovirales that have 

been studied thus far, and even in herpes virus (Bamford et al., 2005; Johnson et al., 

2007), it is not surprising that the 80α gp47 capsid protein also conforms to the HK97 

fold. There are, however, major differences between gp47 and HK97 gp5 throughout 

the structure. The biggest difference is in the elongated P loop of gp47, which was 

found to form a trifoliate β hairpin at the threefold inter-capsomer contacts in the 80α 

icosahedral shell (Spilman et al., 2011). This trifoliate density is reflected in a clustering 

of strong density in the reconstruction, suggesting that this region is critical for capsid 

stability. This region has been found to be critical in providing capsid stability in phage λ 

and P22 as well. For example, in phage λ there is an additional decoration protein (gpD) 
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at this location that strengthens the three fold intercapsomer interaction (Lander et al., 

2008). P22 has an extended P-loop similar to that of gp47 and an additional telokine 

domain that is involved in capsid stability (Parent et al., 2010). In HK97, residues 

involved in crosslinking are located in this region (Wikoff et al., 2000). The other 

important observation is the presence of an α helix in the procapsid that is not found in 

the mature capsid. This suggests that this arm is involved in the maturation process and 

possibly interacts with the scaffold protein (Spilman et al., 2011).  

The most striking conformational change in the 80α capsid protein during capsid 

maturation is in the spine helix (α3), which is composed of residues 127-150 and 

contains a proline at 132 that produces a kink in the helix. The presence of proline in 

helices is often associated with conformational changes due to changes in the 

environment and is used by many biomolecules (Sansom et al., 2000). The flexible 

fitting of gp47 into procapsid and capsid cryo-electron density maps revealed that ψ 

angle of Pro132 switches from +135° to ‒ 45°. This change in the ψ angle causes a 

rotation of the N-terminal half of α3 relative to the rest of the helix (Fig 17a and b) and 

this change is propagated through α2 to the whole P domain, including the P loop. 

However, the position of the A domain relative to the P domain remains essentially the 

same. This mechanism of causing a conformational change differs from HK97, where 

capsid maturation is caused by a rotation of the A domain by 39° relative to the P 

domain. Further refinements in this model by improving 3-D reconstructions to better 

resolution and comparative molecular modeling with SaPI1 particles would provide 
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valuable insight into the assembly process and help understand the phenomenon of 

capsid size redirection. 

The exterior surface of SaPI1 procapsids surprisingly does not show the 

presence of any extraneous protein densities resembling Sid protein seen on P4 

procapsids. This observation suggests that SaPI1 procapsid assembly is not mediated 

by an external scaffold like the P4 capsids. However, both 80α and SaPI1 procapsids 

have internal radial densities which are strikingly prominent in SaPI1 procapsids. The 

presence of prominent fingerlike projections from the inner surface in SaPI1 procapsids, 

coupled with the fact that two SaPI1 encoded proteins are present only in procapsids, 

suggests that these prominent internal densities could be due to SaPi1 proteins. All 

available data are consistent with an internal scaffold. However, it is also formally 

possible that interaction of an external scaffold with the external shell is so weak that 

the external scaffold is lost during the purification steps. 
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Figure 17. Comparison of the structure of gp47 in the 80α procapsid and virion. 
 

(a) Superposition of the gp47 (subunit B) models in the procapsid (blue) and the virion 

(gray), aligned on the C-terminal part of the spine helix (residues 133–149). The right 

panel shows the same superposition rotated by 90° relative to the left panel. (b) Details 

of interactions between the E loop and the P domain of an adjacent subunit in the 

procapsid (blue) and virion (red), aligned as in (a). (c) Superposition of the density for 

the type 1 trimer in the virion (solid, transparent green) and procapsid (mesh) with the 

corresponding models of gp47 (subunit E) fitted in (blue, procapsid; red, virion). The 

arrows indicate domain movements upon capsid expansion. 

Reprinted from J Mol Biol. 405 (3) Spilman M.S., Dearborn A.D., Chang J.R., Damle 

P.K., Christie G.E., and Dokland T. (2011) A conformational switch involved in 

maturation of Staphylococcus aureus bacteriophage 80 alpha capsids., 863-876, with 

permission from Elsevier 
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Chapter 4 

N-terminal cleavage of scaffold and major capsid proteins 
 

Introduction 

In many phages, capsid maturation is controlled by a phage protease that is 

incorporated into the procapsid as a proenzyme that undergoes self-activation. The 

main role of the phage protease is not degradation of structural components of the 

procapsid, but to trigger conformational changes by selective cleavage at specific sites 

in the major capsid protein (Steven et al., 2005). In these phages, the gene encoding 

the phage protease is a member of the head assembly gene cluster that includes genes 

encoding the portal protein, scaffolding protein and capsid protein(s) 

(Hendrix,2003)(Hendrix et al., 1998). Three common arrangements of the location of the 

protease gene relative to those of the scaffolding and capsid protein genes have been 

observed (Effantin et al., 2010) (Fig 18). The first arrangement is exemplified by T4, in 

which the protease gene is followed by the scaffold and major capsid genes. Variants 

on this arrangement fuse one or more of these genes. In HK97 the protease is followed 

by fused scaffold and capsid genes (the N-terminal part of gp5 is a scaffold) (Huang et 

al., 2011). Phage P2 is yet another example of a similar gene order, but in this case the 

protease is fused to scaffold and the protease activity resides in the N-terminal part of  
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Figure 18. Schematic representation showing arrangement of proteases in 
various phages. 
 

A) The phage protease is located between portal and scaffold genes. B) Phage 

protease and scaffold are encoded by nested genes that have different start codons but 

same stop codon. C) Phage protease is fused to major capsid gene. 
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the protein, while the scaffold activity is located in the C-terminal part (Chang et al., 

2009). In a recently studied Salmonella phage Gifsy-2, a novel arrangement of 

composite gene has been found in which the N-terminal part codes for a protease, the 

central domain of unknown function is implicated to have a scaffold function and the C-

terminal region codes for a capsid protein (Effantin et al., 2010). In the second 

arrangement, the prohead protease and scaffolding protein are encoded by nested 

genes, as exemplified by those in phage Mu. The prohead protease (gpI) and scaffold 

(gpZ) have different start codons but same stop codon and use the same reading frame 

(Morgan et al., 2002). This gene arrangement is also shared by phage λ, in which the 

phage protease (gpC) and scaffold are encoded by nested genes that are in the same 

reading frame, have alternate start codons but same stop codon (Morgan et al., 2002; 

Medina et al., 2010). In the last arrangement, the phage protease is fused to the capsid 

protein, as exemplified in lactococcal phage c2 (Lubbers et al., 1995). However, not all 

phages conform to these described categories. It is also worth noting that not all phages 

encode a protease in their head assembly module, because they do not need it for self-

assembly of their procapsids. For example, in phages T7 and P22, head assembly does 

not involve proteolysis (Duda et al., 1995a)(Hendrix et al., 1998). 

Rationale 

Previous studies in our lab with peptide mass fingerprinting of 80α and SaPI1 

particles clearly demonstrated that the protein composition of both these particles is 

identical (Tallent et al., 2007). Furthermore, structural studies with 80α and SaPI1 

mature particles and their precursors confirmed that the particles first assemble as 

roughly spherical procapsids of two distinct sizes that undergo morphological changes 
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to yield mature particles that are expanded, have thinner walls and icosahedral 

symmetry corresponding to two different triangulation numbers (Chapter 3). During our 

attempts at in vivo procapsid assembly in E. coli involving over-expressed scaffold and 

major capsid proteins, we discovered that the masses of scaffold and major capsid 

proteins expressed in E. coli were higher than those of the native ones found in virions. 

The most likely explanation for this discrepancy in masses was that the proteins were 

being processed during capsid assembly. In order to investigate how these proteins 

were post-translationally modified, we analyzed them by SDS-PAGE and determined 

their masses by ESI-mass spectrometry. 

Results 

80 major capsid and scaffolding proteins are post-translationally cleaved at their N-

termini 

Co-expression of 80α scaffold and major capsid proteins in E. coli was carried 

out from plasmid pPD2, a derivative of pET21a, by induction with IPTG (Poliakov et al., 

2008) (Fig 19a). The cells were harvested, lysed and the proteins were analyzed by 

SDS-PAGE along with proteins from purified native 80α and SaPI1 procapsids. 

Furthermore, the co-expressed proteins were purified by ultracentrifugation and 

examined under an electron microscope for formation of procapsid like particles. 

Comparison of over-expressed scaffold and major capsid with those from native 

procapsids by SDS-PAGE reveals a clear discrepancy in migration rates (Fig 19b). Both 

gp46 and gp47 from native procapsids migrated faster than the over-expressed ones by  
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Figure 19. Effect of expressing major capsid and scaffold proteins in E. coli 
 
(a) Map of plasmid pPD2 used for overexpression of gp46 and gp47 in E. coli (b)SDS-

PAGE of major capsid and scaffolding proteins expressed from pPD2 in E. coli 

compared to the same proteins from 80α procapsids. The bands corresponding to gp46 

(SP) and gp47 (CP) are indicated on the 80α lane. (c) Electron micrograph of 

amorphous structures formed during co-expression of major capsid and scaffold 

proteins in E. coli. 
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at least 2 to 3 kDa, suggesting that scaffold and major capsid are post-translationally 

cleaved in the native procapsids. Furthermore, self-assembly of co-expressed scaffold 

and major capsid proteins failed to yield procapsid like particles and instead assembled 

into monster-like structures similar to those observed for phage P22 (Earnshaw et al., 

1978) (Fig 19c) indicating that either these proteins were improperly folded in E. coli or 

proteolytic cleavage of scaffold and major capsid proteins does not occur in this system 

and is necessary for self-assembly of procapsid like particles.  

Our collaborators performed mass spectrometry (LC-ESI-MS/MS) of structural 

proteins from 80α and SaPI1 procapsids to confirm the above stated observations and 

determine the molecular masses of major capsid and scaffold proteins (Poliakov et al., 

2008). The measured masses of 35,062.20 ± 0.18 Da in 80α and 35,061.86 ± 0.53 Da 

in SaPI1 are within 1 Da of the calculated mass (35,062.9 Da) for residues 15–324 of 

the 80α major capsid protein (gp47). The measured masses of 21,700.5 ± 0.07 Da (in 

80α) and 21,701.05 ± 0.34 Da (in SaPI1) are within 1 Da of the calculated mass 

(21,700.9 Da) for residues 14–206 of the 80α scaffolding protein gp46 (Fig 20a).  

These data show that scaffold and major capsid proteins are identically processed in 

both 80α and SaPI1 procapsids and rules out the possibility of differential protein 

processing in formation of smaller capsids. Furthermore, the most interesting 

observation is that the scissile bond in both the scaffold and major capsid protein 

sequences lies between Phe and Ala. Not only are the P1-P1’ residues identical, but 

there is also significant similarity in the N-terminal region (P9-P1) of the major capsid  
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Figure 20. Mass spec analysis and cleavage sites of major capsid and scaffold 
proteins 
 
Reverse phase chromatography and ESI-MS of SaPI1 procapsids.  

The total ion current of the MS detector is plotted against elution time in minutes. The 

ion current does not accurately reflect the abundance of the measured ionic species. 

Peaks and their corresponding spectra are shown with the measured masses listed. 

Peak one (approximately 14 min) includes SaPI1 gp6 (theoretical mass 8,271.5 Da) and 

N-terminally truncated scaffolding protein gp46 (21,700.9 Da); peak two also contains 

gp6 as well as SaPI1 gp7 (22,805.3 Da) and major tail protein gp53 (21,394.5 Da). The 

third peak in the chromatogram contains N-terminally truncated major capsid protein 

gp47 (35,062.9 Da). 

(B) Table of measured masses of gp46 and gp47 in 80α and SaPI1 procapsids, 

compared to the theoretical mass for the cleaved protein, as well as the N-terminal 

sequence of the two proteins. The cleavage site is indicated by an asterisk (*) 

 

Reprinted from J Mol Biol. 380 (3) Poliakov A., Chang J.R., Spilman M.S., Damle P.K., 

Christie G.E., Mobley J.A., and Dokland T. Capsid size determination by 

Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of 

SaPI1 proteins into procapsids, 465-475, (2008) with permission from Elsevier 
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and scaffolding proteins with a consensus sequence of KLKxNLQxF*A, where * denotes 

the cleavage site (Fig 20b). All these results point towards involvement of a common 

protease in N-terminal cleavage of both the major capsid and scaffold proteins. 

Cleavage of structural proteins is not uncommon among dsDNA bacteriophages 

and has been reported in phages λ (Medina et al., 2010), P2 (Chang et al., 2008), T4 

(van Driel et al., 1980) and HK97 (Duda et al., 1995b). Such cleavage has been 

observed to occur after procapsid assembly in P2 (Marvik et al., 1994a) and HK97 

(Conway et al., 1995) and is considered an important control point in the assembly 

pathway that is essential for capsid expansion to occur. The effect of the cleavage may 

be to affect the thermodynamic stability of the capsid through changes in quaternary 

interactions or to induce release of the scaffolding proteins. Cleavage of the capsid 

protein with trypsin in phage P4 procapsids led to capsid expansion and scaffold 

removal (Wang et al., 2003). Cleavage and even complete degradation of the 

scaffolding protein are commonly used mechanisms for scaffolding removal and escape 

from the procapsid in some viruses (Dokland,1999; Fane et al., 2003). Proteolytic 

cleavage is usually carried out by a phage-encoded protease. As described above, the 

protease gene is generally located immediately upstream of the scaffolding protein in 

the same operon, or sometimes embedded in the scaffolding protein itself. 

Staphylococcal phage proteases have not been extensively studied. However, in some 

staphylococcal phage genomes, such as phiN315 and 77, orfs with ClpP like domains 

belonging to the crotonase-like superfamily (NP_835555.1 and NP_958605.1 

respectively) are found immediately upstream of the capsid genes. Thus, it seemed 

likely that one of three putative orfs that lie between the scaffold and portal genes in the 
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80α genome, namely orf43, orf44 and orf45, might encode a phage protease. orfs 43 

and 45 are both extremely small, encoding putative proteins of 61 and 56 amino acids, 

respectively, and deletions of the corresponding orfs in the related phage ɸ11 have no 

phenotype ( J. Penades, personal communication). The product of orf44, gp44, was 

found in both 80α and SaPI1 procapsids (Poliakov et al., 2008), and previously in 80α 

virions (Tallent et al., 2007) and thus was the most likely candidate for a phage 

protease. 

Role of gp44 in self-assembly of 80α and SaPI1 capsids 

In order to determine whether gp44 is the phage protease, we deleted orf44 from 

an 80α prophage in both SaPI1 negative and SaPI1 containing S. aureus strains to 

generate S. aureus strains ST64 and ST65, respectively. We expected that deletion of a 

gene encoding the phage protease would lead to arrest of the assembly process at the 

procapsid stage because of uncleaved scaffold and major capsid proteins, and hence 

would be lethal (Medina et al., 2010). Furthermore, we also expected that the arrest of 

self-assembly at the procapsid stage would lead to a slower migrating full length major 

capsid protein and the presence of an extra band of scaffold protein, completely absent 

in mature particles, during SDS-PAGE analysis. Also, the morphology of the particles 

obtained from the mutant strains would be procapsid-like and significantly different than 

those from wt mature particles and could be easily distinguished by electron 

microscopy. 

S. aureus strains ST64 and ST65, along with the 80α wt equivalent strains 

RN10616 and RN10628 as controls, were induced by mitomycin C and monitored until 
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lysis. Cell lysates were filtered through 0.45 µm filters and the phage concentration and 

transducing titers were determined. Both ST64 and ST65 cell lysates yielded no 

detectable pfu (Fig 21a). Thus, orf44 is essential for the phage. Surprisingly, orf44 is 

non-essential for the SaPI1 transducing particles; we observed a SaPI1 transduction 

frequency of 4.5 x 108 TU/ml, comparable to wt SaPI1 particles (Fig 21b). 

Particles from ST64 and RN10616 lysates were also precipitated using ZnCl2 and 

subjected to SDS-PAGE analysis in order to compare the migration rate of their major 

capsid proteins. The migration rates of major capsid from orf44 mutant 80α and wt 80α 

were found to be the same (Fig 22). Also, there was no extra band that could be 

attributed to the scaffold. These results suggested that the scaffold was being removed 

and hence the self-assembly was not arrested at the procapsid stage. Furthermore, in 

our collaborator’s lab, electron microscopy was performed on particles obtained from 

ST64 and ST65. We observed expanded aberrant capsids with tails attached in electron 

micrographs of ST64 samples (Fig 23a). This observation supported our view that the 

mature capsids were being formed. However, we also observed an anomalously large 

number of free tails and some capsids without tails, suggesting that gp44 had a 

significant role in capsid stability. Only a few of these expanded capsids had DNA in 

them. Electron micrographs of SaPI1 containing strain ST65 (Fig 23b), however, 

showed predominantly normal looking, smaller sized, DNA filled capsids with attached 

tails, and there were no free tails or empty capsids seen in the micrographs. 
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Figure 21. Effect of orf44 deletion on 80α and SaPI1 titers.  
 

SaPI1 negative (ST64) and SaPI1 positive (ST65) lysogens of 80α Δorf44  

were grown to mid-exponential phase and then induced with 2 µg/ml mitomcyin C. 

Shown in the panel (a) are the plaque titers and in panel (b), the transducing titers of 

these strains with RN10616 and RN10628 as controls 

.
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Figure 22. SDS-PAGE analysis of proteins from gp44 mutant phage and SaPI1 
particles.  
 

Comparison of major capsid proteins from SaPI1 negative (ST64) and SaPI1 positive 

(ST65) 80α Δorf44 mutant lysogenic strains were induced with mitomycin C and allowed 

to lyse. Particles were purified using ZnCl2 and analyzed side by side with those from wt 

80α. Electrophoresis was done on 12% Tris-HCl gel. 

Lane  (a) molecular weight 

(b) 80α particles 

(c) particles from 80α Δorf44 (ST64) 

(d) SaPI1particles with an  80α Δorf44 helper phage (ST65)  

The arrow indicates the band corresponding to truncated major capsid protein in each 

lane.  
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Figure 23. Electron micrographs of CsCl purified phage particles obtained from 
orf44 deletion mutants. 
 

Samples for negative stain were prepared by applying phage suspensions to glow-

discharged carbon-only grids (Electron Microscopy Sciences), washed 2× with dialysis 

buffer and stained with 1% uranyl acetate. Samples were observed in an FEI Tecnai 

F20 electron microscope operated at 200kV and images were captured on a 4k × 4k 

Gatan Ultrascan CCD camera or on Kodak SO-163 film at magnifications from 38,000× 

to 81,200×.  

80α∆44 particles from ST64. 

SaPI1 particles with an 80α∆44 helper phage, from ST65. 
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SaPI1 capsids are more stable in absence of 80α gp44 

Cryo-electron microscopy of wt SaPI1 particles always posed a technical 

problem. Sample preparation for cryo-electron microscopy of SaPI1 particles was 

difficult because good quality ice could not be generated with the specimen samples, 

due to the presence of excessive amounts of free DNA. This resulted in sub-optimal 

imaging conditions and hence it was difficult to collect a large number of images from a 

given sample. This created a major setback in 3D cryo-electron reconstruction of SaPI1 

capsids because the resolution of a reconstruction is directly proportional to the number 

of images. The problem of free DNA in SaPI1 lysate is so acute that one can detect it by 

“streaming” of the sample when collecting CsCl banded SaPI1 particles. The free DNA 

is believed to have leaked from SaPI1 particles during the process of centrifugation. 

Interestingly, this free DNA was not found in the CsCl bands during isolation of SaPI1 

particles generated from the SaPI1-positive 80α Δgp44 mutant strain. Furthermore, 

when these samples were prepared for cryo-electron microscopy, they vitrified well. 

These observations suggest that SaPI1 capsids are more stable in the absence of 80α 

gp44. Cryo-electron 3D reconstructions of SaPI1 capsids were subsequently carried out 

using this strain. 

gp44 is not a protease 

The results from SDS-PAGE analysis clearly ruled out gp44 as the prohead 

protease, since the migration rate of major capsid protein from the 80α gp44 mutant is 

same as from wt 80α. In addition, no extra band corresponding to scaffold was 

observed. This means that major capsid protein is processed and that scaffold is 

removed from the shells. Results from electron microscopy also clearly indicated that 
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mature particles were being formed. Furthermore, transduction assays showed that 

SaPI1 particles capable of transducing at wt levels were being assembled from the 

mutant 80α in presence of SaPI1. It was surprising that gp44 was essential for 80α, but 

not for SaPI1. These observations strongly suggested that gp44 is a structural protein 

and possibly plays a role in stability of T=7 capsids. This suggestion is supported by our 

observation of an abnormal number of free tails and some filled capsids without tails in 

the electron micrographs of ST64 samples. Since the samples for electron microscopy 

were prepared by purifying phage particles by isopycnic sedimentation on a CsCl 

gradient, a process that separates molecules on the basis of density, it is unusual that 

the free tails co-purified with intact DNA-containing particles. Thus it seems more likely 

that these free tails resulted from disruption of intact particles after the purification 

process and suggests that the stability of the particles is affected by loss of gp44. 

A search in the reference protein database (NCBI) using PSI-BLAST (Position-

specific iterated BLAST) (Altschul et al., 1997) with the gp44 amino acid sequence as a 

query showed that this protein had homologs in other staphylococcal Siphoviridae and a 

slight similarity to phage SPP1 gp6 protein. SPP1 gp6 is required for efficient infection 

of B.subtilis and has been demonstrated to play a role in DNA ejection (Vinga et al., 

2006). Deletion of the gene encoding SPP1 gp6 causes premature DNA ejection and 

significant loss of infectivity. Thus based on all these data, we can safely rule out the 

possibility that orf44 encodes a phage protease and suggest that it is a “neck” protein 

involved in head-tail connection and/or DNA stability. 
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A host protease is involved in N-terminal cleavage of major capsid and scaffold 

proteins. 

The conclusion that gp44 is not a phage protease led us to consider other 

possibilities for the protease activity. Sometimes the protease is found embedded in the 

scaffold (Conway et al., 1995; Duda et al., 1995a) or the major capsid protein (Morillas 

et al., 2008) and there were three more orfs in the 80α morphogenetic operon, namely 

orf43, orf45 and orf48 that did not have any functions assigned to them. The possibility 

that scaffold or the major capsid protein had proteolytic domains was remote since 

neither of these proteins was truncated when expressed in E. coli. However, proteolytic 

inactivity due to improper folding could not be ruled out since we had also failed to 

obtain discrete procapsid like particles from these proteins. 

In order to rule out the possibility that proteolytic inactivity was due to improper 

folding in E. coli, we over-expressed scaffold and major capsid proteins in S. aureus, 

the normal host of 80α, by cloning them into shuttle vector pG164 (D'Elia et al., 2006; 

Pereira et al., 2008) to generate plasmid pPD21 and expressing the genes in strain 

SA178RI which encodes T7 RNA polymerase. Strains carrying pPD2 and pPD21 were 

grown and induced with IPTG for 2 hours, after which cells were harvested and the 

proteins analyzed by SDS-PAGE. This analysis (Fig 24) showed that the migration of 

both the scaffold and major capsid proteins expressed in S. aureus was similar to those 

of native virions and faster than those expressed from the same genes in E. coli. Thus, 

both scaffold and major capsid proteins were cleaved in S .aureus in the absence of any 

other 80α-encoded genes. This observation ruled out the possibility that any other 80α  
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Figure 24. Cleavage of 80α scaffold and capsid proteins in S. aureus.  
 

SDS-PAGE analysis of overexpressed scaffold and major capsid proteins in E. coli and 

S. aureus, compared with those obtained from mature virions. 

(a) wt 80α virions 

(b) Plasmid pPD2, expressing major capsid and scaffold in E. coli. 

(c) Plasmid pPD21, expressing major capsid and scaffold in S. aureus. 

(d) Plasmid pG164 as a negative control. 

(e) MW markers; size in KDa indicated 

Arrowheads indicate the bands corresponding to capsid (cp) and asterix to scaffold (sp) 

proteins. The full length proteins are indicated in black and their processed versions in 

red. 
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orfs encoded the phage protease. Furthermore, the mass of major capsid when 

expressed alone in S. aureus was also similar to the native protein from 80α virions (Fig 

35), eliminating the possibility that the scaffold is responsible for the proteolytic activity. 

These observations suggested that either the major capsid protein contains a proteolytic 

domain or its proteolysis is effected by a host protease.  

A BLAST search using the major capsid protein sequence as the query failed to 

reveal any conserved domains that correspond to known proteases This led us to 

consider the possibility that the 80α scaffold and capsid were cleaved by a host 

protease. If indeed the host protease cleaved these phage proteins then there would be 

host proteins that are targets of this protease. Our earlier studies showed that 80α 

scaffold and major capsid proteins are N-terminally cleaved and that the scissile bond 

lies between Phe and Ala, within a conserved sequence in both these proteins, 

suggesting the possibility of this region being involved in substrate specificity. Therefore 

it is likely that the targets of this protease would also have similar sequence upstream of 

their cleavage sites. A BLAST search of the N-terminal cleaved fragment in the S. 

aureus protein database yielded a single hit, S. aureus ribosomal protein L27  

Ribosomal protein L27 is a protein from the large (50S) ribosomal subunit that 

participates in both subunit assembly and the peptidyl transferase reaction (Wower et 

al., 1998). An L27 deletion mutant of E. coli  shows retarded growth (five to six fold) 

compared to the wild-type strain, as well as deficiency in the peptidyl transferase activity 

(Maguire et al., 2005). Crystallographic study of the full ribosome (70S) from Thermus 

thermophilus showed that the N-terminus of the ribosomal protein L27 extends into the  
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Figure 25. Sequence alignment of ribosomal protein L27  
 

(a) Shown is a sequence alignment from several representative Gram negative and 
Gram positive bacteria showing the difference in the N-terminal region. 

(b) Sequence alignment of the N-terminal sequences of 80α major capsid protein, 
scaffold protein and S. aureus ribosomal protein, L27 

 

The alignment was performed using an online multiple sequence alignment program: 
Praline, IBIVU Vrije Universiteit Amsterdam 
 

The conservation scoring is performed by PRALINE. The scoring scheme works from 0 
for the least conserved alignment position, up to 10 for the most conserved alignment 
position. 
The color assignments are: 

Unconserved 0 1 2 3 4 5 6 7 8 9 10 Conserved 
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(a) 

  . . . . . . . . . 10 . . . . . . . . . 20 . . . . . . . . . 30 . . . . . . . . . 40 . . . . . . . . . 50 

E. coli  - - - - - - - - M A H K K A G G S T R N G R D S E A K R L G V K R F G G E S V L A G S I I V R Q R G 

S. enterica  - - - - - - - - M A H K K A G G S T R N G R D S E A K R L G V K R F G G E A V L A G S I I V R Q R G 

T. thermophilus  - - - - - - - - M A H K K G L G S T K N G R D S Q A K R L G V K R Y E G Q V V R A G N I L V R Q R G 

S. aureus  M L K L N L Q F F A S K K G V S S T K N G R D S E S K R L G A K R A D G Q F V T G G S I L Y R Q R G 

B. subtilis  M L R L D L Q F F A S K K G V G S T K N G R D S E A K R L G A K R A D G Q F V T G G S I L Y R Q R G 

B. cereus  M L R L D L Q F F A S K K G V G S T K N G R D S Q S K R L G A K R A D G Q T V S G G S I L Y R Q R G 

Consistency 2 2 1 2 1 2 2 2 6 * 5 * * 7 4 8 * * 8 * * * * * 8 8 * * * * 7 * * 4 5 * 8 3 * 4 6 * 8 * 8 5 * * * * 

                                                    

  . . . . . . . . . 60 . . . . . . . . . 70 . . . . . . . . . 80 . . . . . . . . . 90 . . . . . . .    

E. coli  T K F H A G A N V G C G R D H T L F A K A D G K V K F E V K G P K N R K F I S I E A E - - - -    

S. enterica  T K F H A G T N V G C G R D H T L F A K A D G K V K F E V K G P K N R K Y I S I V A E - - - -    

T. thermophilus  T R F K P G K N V G M G R D F T L F A L V D G V V E F Q D R G - R L G R Y V H V R P L A - - -    

S. aureus  T K I Y P G E N V G R G G D D T L F A K I D G V V K F E R K G - R D K K Q V S V Y T V A E - -    

B. subtilis  T K I Y P G E N V G R G G D D T L F A K I D G T V K F E R F G - R D R K K V S V Y P V A Q - -    

B. cereus  T K I Y P G V N V G R G G D D T L Y A K V D G V V R F E R L G - R D R K Q V S V Y P V A Q E A    

Consistency * 8 6 5 6 * 4 * * * 4 * 5 * 4 * * 8 * 7 6 * * 4 * 7 * 8 3 4 * 0 8 4 6 8 4 9 7 9 3 5 5 4 1 0 0    

                                                    

 

(b) 

  . . . . . . . . . 10 . . . . . . . . 

80α major capsid  M E Q T Q K L K L N L Q H F A S - - 

80α scaffold  M - E E N K L K F N L Q F F A D Q S 

S. aureus L27  - - - - - M L K L N L Q F F A S - - 

Consistency 3 0 2 1 1 5 * * 6 * * * 5 * * 6 0 0 
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peptidyl transferase center and makes contact with the tRNA substrates (Selmer et al., 

2006). Sequencing of L27 from T. thermophilus by Edman degradation showed that the 

N-terminus of the peptide was alanine instead of formyl methionine (Kimura et al., 

1984). Furthermore, no density was detected for the N-terminal methionine of L27 in the 

high resolution structures of L27 (Voorhees et al., 2009) suggesting it is not present. 

Ribosomal protein L27 is highly conserved among different bacteria, chloroplasts 

of plants and red algae and the mitochondria of fungi. Sequence comparison of L27 

from E. coli and S. aureus as well as several other Gram-positive and Gram-negative 

bacteria (Fig 25) reveals dissimilarity in the N-terminal region. Furthermore, peptide 

analysis of ribosomal proteins from a closely related Gram-positive bacterium, B.subtilis, 

performed using capillary LC−MS/MS, showed that the predicted N-terminal sequence, 

MLRLDLQFF, was missing in ribosomal protein L27 (Lauber et al., 2009). 

The absence of the N-terminal fragment suggests that this protein is also N-

terminally cleaved between Phe and Ala. The sequences of ribosomal protein L27 from 

S. aureus and B.subtilis are highly similar and though no proteomic studies of 

staphylococcal L27 have been performed to date, it seems likely that staphylococcal 

L27 must be similarly cleaved by a staphylococcal protease. Furthermore, the similarity 

of the N-terminal region of ribosomal protein L27 and the scaffold and 80α major capsid 

proteins and the identical predicted P1-P1’ cleavage sites strongly suggest that these 

proteins are cleaved by the same host protease. 

 Discussion 

Our studies clearly demonstrated that 80α scaffold and major capsid proteins are 

N-terminally cleaved and that the scissile bond lies between Phe and Ala within a 
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conserved sequence in both these proteins, indicating that a common protease is 

involved in proteolysis. Over-expression studies in S. aureus showed that 80α scaffold 

does not cleave major capsid protein or show any autocatalytic activity. Furthermore, a 

BLAST search with the scaffold protein sequence as a query did not show any similarity 

to known proteases or any conserved domain that could be attributed to any known 

family of peptidases. 

Our observation that 80α and SaPI1 procapsids contained truncated scaffold and 

major capsid is in contrast to the accepted notion that cleavage triggers conformational 

changes leading to maturation of capsids as seen in HK97 (Gertsman et al., 2009) and 

suggests that protein cleavage and procapsid maturation in 80α and SaPI1 particle 

assembly are connected events. The assembled procapsids represent the first 

irreversible stage of the procapsid assembly process and probably the role of N-terminal 

cleavage of scaffold and major capsid proteins is to prepare the procapsid for 

maturation events rather than be a cause of it. Most likely, the internal pressure 

generated by incoming DNA is the cause of procapsid expansion and maturation. 

Inactivation of gp44 demonstrated that it does not have a proteolytic function, 

since no full length proteins were observed in the capsids obtained from mutant strains. 

A BLAST search using gp44 sequence as a query showed a distant similarity with 

phage SPP1 gp7, which is a neck protein. The neck proteins are found around the 

periphery of the portal complex which is incorporated at one of the vertices of the 

capsid. These proteins are present in minor amounts and play an important role in 

stabilizing capsids and preventing premature DNA ejection (Vinga et al., 2006). Thus 

gp44 could be a neck protein, consistent with the observation that this protein is not 
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abundant in wt capsids. Growth studies with gp44 mutant strains showed that gp44 was 

essential for phage 80α even though virions were formed, implying that it confers 

stability to the 80α capsids and helps DNA ejection. SaPI1 particles obtained from the 

gp44 mutant strains transduced at wt levels and also seemed more stable, since they 

did not leak as much DNA as wt SaPI1 particles. The spatial arrangement of major 

capsid proteins around the portal complex is different in a T=7 capsid compared to a 

T=4 capsid. The role of gp44 in 80α capsids thus could be to stabilize the major capsid-

portal protein interactions. The large number of free tails seen in the cryo-EM of ST64 

would be consistent with this role. This reinforcement is not needed by SaPI1, owing to 

a different spatial arrangement in T=4 capsids. On the contrary, incorporation of gp44 in 

smaller capsids could be deterrent to the stability of smaller capsids and lead to DNA 

leakage. 

The involvement of a host protease in N-terminal cleavage of 80α capsid and 

scaffolding proteins is novel and unexpected, adding a new mechanism to our 

knowledge of post-translational modification of capsid proteins in phages studied so far. 

In the absence of its own protease, 80α seems to use a host protease that is normally 

responsible for processing of ribosomal protein L27. L27 is an essential component of 

the 50S ribosome particle that is highly abundant in bacterial cells. Ribosomal protein 

L27 from Gram-negative bacteria, such as E. coli, have a formyl-methionine at the P1 

position which is presumably removed by the action of two essential enzymes, peptide 

deformylase and methionine aminopeptidase (MAP) (Chang et al., 1989; Arnold et al., 

1999; Giglione et al., 2004). The loss of N-terminal methionine is the most common post 

translational modification found in bacteria through a proteolytic pathway known as N-
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terminal methionine excision (NME) and these enzymes are probably responsible for 

removing f-Met from at least 34 other proteins (Arnold et al., 1999) including ribosomal 

proteins (Ochi,1995). The N-terminus of the staphylococcal L27, however, has a 

prosequence of nine amino acids and it is unlikely that MAP has a role in its N-terminal 

processing. S. aureus appears to have a novel protease that is responsible for 

processing L27. 80α has devised a way to exploit this presumably essential host 

protease, thereby reducing its coding capacity and also ensuring high fidelity in terms of 

processing of its capsid and scaffold, by having a similar cleavage site and N-terminal 

sequence as the ribosomal protein L27. 

S. aureus has a huge repertoire of proteases that consists of 131 known and 

putative peptidases and 43 non-peptidase homologues (Rawlings et al., 2010) 

(http://merops.sanger.ac.uk/index.shtml). Serine peptidases account for almost one-

third of all peptidases in S. aureus. The novel observation of a host protease being 

involved in the processing of major capsid and scaffold proteins raises many intriguing 

questions. First, what is the substrate specificity of this protease? Substrate specificity is 

attributed to the substrate binding pocket of an enzyme. Based on the consensus 

sequence KLKxNLQxF*A and identical P1-P1’ sites in its substrates, this protease is an 

endopeptidase that recognizes extended substrates and/or a bulky aromatic residue at 

its S1 site. Very few enzymes are known that have extended specificity up to the P9 

residue. Human caspase-3 and staphylococcal GluC are some proteases that have 

extended specificity. On the other hand, recognition of a bulky aromatic residue such as 

phenylalanine at the P1 position in the substrate is a feature commonly found in 

chymotrypsin-like serine endopeptidases. Do these N-terminally processed proteins 
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really need a protease that has stringent specificity when the problem of multiple 

cleavage can be easily averted by hiding other potential cleavage sites deep inside their 

structure? Second, what is the efficiency of this protease? Viral proteases do not have 

high catalytic efficiency (kcat/Km) and it has been argued that low kcat/Km value is 

beneficial for the self-assembly process (Babe et al., 1997). On the other hand, bacterial 

proteases often have high catalytic efficiency. Interestingly, the major capsid and 

scaffold proteins have a different amino acid at the P2 position. Does this mean that the 

rate of cleavage of scaffold is different than of major capsid? We never detected either 

full length protein in our study with the procapsids, but that does not imply that the 

catalytic efficiency of the protease is high.  

Our finding that host proteases could be involved in N-terminal processing of 

major capsid and scaffold adds a new dimension to the strategies that viruses employ to 

exploit their host. Furthermore, our study also strongly suggests that the staphylococcal 

ribosomal protein L27 is similarly processed, which is an important contribution to the 

understanding of the most fundamental and important mechanism of the translation 

process in S. aureus. Further studies are needed to identify this protease and study its 

substrate specificity. If this protease has a stringent specificity, then such studies could 

help design competitive inhibitors that target this host protease and thus provide a new 

weapon in our fight against S. aureus. 
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Chapter 5 

Role of SaPI proteins in capsid size determination 

Introduction 

The production of smaller T=4 transducing particles is a striking characteristic of 

helper phage exploitation by SaPIs. In earlier studies in our lab (Tallent et al., 2007), 

protein profiling of structural proteins of both sized particles by SDS-PAGE analysis 

failed to reveal any prominent bands that could be attributed to SaPI1-encoded proteins. 

Furthermore, in that study, intact phage particles were disrupted, digested with trypsin 

and peptide mass fingerprinting was done by mass spectrometry-MALDI-TOF. Mass 

spec analysis confirmed that the smaller sized particles were entirely composed of 

helper phage encoded proteins. This suggested that SaPI1 must act at an earlier step in 

capsid assembly to modify the capsid size. In order to investigate the possibility of a 

transient involvement of SaPI1 encoded proteins during their assembly, it was 

necessary to analyze the protein composition of both types of particles at an 

intermediate stage of their assembly rather than the final stage. In order to arrest self-

assembly at the procapsid stage, small terminase subunits were deleted from 80α and 

SaPI1 (Chapter 3). Procapsid production was induced in 80α ΔterS prophage containing 

strain (ST24) and SaPI1 ΔterS positive 80α lysogenic strain(ST37) . Procapsids were 

purified on CsCl followed by sucrose gradients as described previously. 
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SDS-PAGE analysis of CsCl and sucrose gradient-purified procapsid proteins  

SDS-PAGE analysis of CsCl-purified 80α and SaPI1 procapsids showed a set of 

bands that mostly corresponded to those that were identified in the earlier study by our 

lab (Tallent et al., 2007). These bands included a full complement of head and tail 

proteins (Fig 26) consisting of minor tail proteins gp59, gp61, gp62 and gp68 

(theoretical masses, 71.0, 73.7, 66.8 and 43.8 kDa, respectively), portal protein gp42 ( 

59.5kDa), major capsid protein gp47 (36.8kDa) and major tail protein gp53 (21.5kDa). In 

addition, both 80α and SaPI1 procapsid samples had a prominent band at an apparent 

mass of approximately 27kDa that corresponds to the gp46 scaffolding protein 

(calculated mass, 23.4kDa). SDS-PAGE of the sucrose-gradient purified 80α and SaPI1 

procapsids showed a similar set of capsid proteins, but greatly reduced amounts of the 

tail proteins. In addition, the SaPI1 procapsids yielded a faint band at 8kDa (Fig. 26), 

identified as SaPI1 gp6 by peptide mass fingerprinting. 

Peptide mass fingerprinting of 80α and SapI1 procapsids 

Peptide mass fingerprinting (PMF) (James et al., 1993; Pappin et al., 1993; Yates 

et al., 1993) was employed for conclusive identification of structural proteins of 80α and 

SaPI1 procapsids. Proteins from CsCl-purified and sucrose gradient-purified procapsids 

were resolved by SDS-PAGE, in-gel digested with trypsin and analyzed by liquid 

chromatography and tandem mass spectroscopy (ESI-TOF). The PMF spectra of 

peptides were compared to an S. aureus protein database and all 80α and SaPI1 

related proteins in the digest were identified. A comprehensive list of all 80α and SaPI1 

proteins detected during the study is listed in Table 3 
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Figure 26. SDS-PAGE of the 80α and SaPI1  

CsCl-purified protein fractions, as well as SaPI1 procapsids purified on sucrose 
gradients. The identities of major bands are indicated by the gene product number 

. Reprinted from J Mol Biol. 380 (3) Poliakov A., Chang J.R., Spilman M.S., Damle P.K., 

Christie G.E., Mobley J.A., and Dokland T. Capsid size determination by 

Staphylococcus aureus pathogenicity island SaPI1 involves specific incorporation of 

SaPI1 proteins into procapsids, 465-475, (2008) with permission from Elsevier 

 

  



www.manaraa.com

 

142 
 

 



www.manaraa.com

 

143 
 

Table 3. Listing of all proteins detected by ESI-MS of trypsin digests  
 

orf 
(gp) 
 

Accession 
number 

 

Number 
of amino 

acids 
 

Molecular 
mass (kDa) 

 
Function/location 

 

% Sequence coverage 
 

     

CsCl 
fraction 

 

Procapsids 
 

80α SaPI1 80α SaPI1 

80α proteins 

03 YP_001285317.1 301 35.6 Unknown 6.0 20.6 – – 

08 YP_001285322.1 262 30.1 Putative 
antirepressor 

40.1 39.7 – – 

10 YP_001285324.1 58 6.7 Unknown – 22.4 – 29.3 

15 YP_001285329.1 73 8.6 Unknown 19.2 – – – 

16 YP_001285330.1 207 23.7 Unknown 27.5 30.9 5.3 9.7 

17 YP_001285331.1 142 16.0 Single-stranded-
DNA-binding protein 

8.5 35.2 – – 

20 YP_001285334.1 256 29.7 Putative replisome 
organizer 

12.5 – – – 

32 YP_001285346.1 170 19.0 dUTPase – 37.1 17.1 – 

36 YP_001285350.1 128 15.0 Unknown 26.6 46.9 8.6 33.6 

39 YP_001285353.1 140 16.5 Transcription 
activator (rinA) 

– 9.3 – – 

40 YP_001285354.1 146 16.8 Small terminase 
subunit 

– 29.5 – – 

41 YP_001285355.1 447 52.5 Large terminase 
subunit 

– 13.0 – – 

42 YP_001285356.1 511 59.5 Portal protein 47.0 59.7 49.5 48.5 

44 YP_001285358.1 331 38.5 Minor capsid protein, 
putative protease 

37.1 38.1 30.0 28.2 

46 YP_001285360.1 206 23.4 Scaffolding protein 47.6 74.8 67.0 54.4 

47 YP_001285361.1 324 36.8 Major capsid protein 71.0 70.4 71.3 73.5 

48 YP_001285362.1 95 10.9 Unknown 23.2 61.1 – – 
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orf 
(gp) 
 

Accession 
number 

 

Number 
of amino 

acids 
 

Molecular 
mass (kDa) 

 
Function/location 

 

% Sequence coverage 
 

     

CsCl 
fraction 

 

Procapsids 
 

80α SaPI1 80α SaPI1 

49 YP_001285363.1 110 12.8 Putative DNA-
packaging protein 

33.6 28.2 40.0 37.3 

50 YP_001285364.1 100 11.8 Unknown 20.0 41.0 44.0 – 

52 YP_001285366.1 127 14.7 Unknown 28.3 31.5 30.7 – 

53 YP_001285367.1 193 21.5 Major tail protein 75.6 54.9 42.5 62.7 

54 YP_001285368.1 121 13.1 Putative tail 
assembly protein 

19.0 – 12.4 – 

55 YP_001285369.1 114 13.6 Putative tail 
assembly protein 

42.1 – – – 

56 YP_001285370.1 1154 125.8 Tail tape measure 
protein 

19.2 11.6 – 2.1 

58 YP_001285372.1 315 37.1 Likely minor tail 
protein 

61.3 51.7 5.7 35.2 

59 YP_001285373.1 633 71.0 Lipase, likely tail tip 53.2 47.6 25.9 30.3 

61 YP_001285375.1 636 73.7 Minor tail protein 24.7 67.8 28.9 54.9 

62 YP_001285376.1 607 66.8 Minor tail protein, 
baseplate 

37.9 67.2 35.0 56.2 

64 YP_001285378.1 125 14.1 Likely minor tail 
protein 

33.6 54.4 – – 

66 YP_001285380.1 99 11.8 Likely minor tail 
protein 

– 17.3 – – 

67 YP_001285381.1 632 72.0 Cell wall hydrolase, 
likely tail tip 

22.3 29.9 5.1 – 

68 YP_001285382.1 390 43.8 Putative tail fiber 
protein 

70.8 76.2 36.9 52.6 

69 YP_001285383.1 131 14.4 Likely minor tail 
protein 

67.9 58.8 42.7 60.3 

71 YP_001285385.1 484 53.8 Lysis protein 13.6 –  – 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=6899&_issn=00222836&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DYP_001285373.1%5baccn%5d
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=genbank&_cdi=6899&_issn=00222836&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ncbi.nlm.nih.gov%252Fentrez%252Fquery.fcgi%253Fcmd%253Dsearch%2526db%253Dnucleotide%2526doptcmdl%253Dgenbank%2526term%253DYP_001285375.1%5baccn%5d
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orf 
(gp) 
 

Accession 
number 

 

Number 
of amino 

acids 
 

Molecular 
mass (kDa) 

 
Function/location 

 

% Sequence coverage 
 

     

CsCl 
fraction 

 

Procapsids 
 

80α SaPI1 80α SaPI1 

 

 
SaPI1 proteins 

5 AAC28956.2 175 20.6 Putative accessory 
capsid protein 

– 32.6 – – 

6 AAC28957.2 72 8.3 Putative capsid size 
determinant 

– 91.7 – 91.7 

7 AAC28958.2 192 22.8 Putative capsid size 
determinant 

– 79.7 – 9.9 

11 AAL67613.1 131 15.2 Unknown – 16.8 – – 

18 AAL67617.1 106 12.6 Unknown – 36.8 – – 
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80α proteins identified in this study 

All proteins previously identified in 80α and SaPI1 virions (Tallent et al., 2007) 

were detected in this study. Additionally, minor amounts of some proteins not found in 

the earlier study were also identified. Several proteins were found in CsCl purified 

samples but not in sucrose purified samples or their presence was reduced in the 

samples from sucrose gradients. Most of these were components of tails which had co-

purified with procapsids on CsCl gradients. Other proteins that were abundant in CsCl-

purified samples but not in sucrose-purified procapsids corresponded to non-structural 

proteins. For example, gp8 is a putative antirepressor, gp71 is an endolysin and 

involved in cell lysis, gp20 is an initiator involved in DNA replication and gp48 has 

unknown function but since it belongs to the morphogenetic operon, it could have 

structural role. It is also quite possible that some of these nonstructural proteins have 

moonlighting functions. A number of host proteins were also detected in the CsCl-

purified samples. Most of the host proteins that were identified were ones that are 

normally present in great abundance, for example ribosomal proteins, or enzymes with 

large molecular masses such as DNA polymerase. Additionally, we identified three 

more proteins in this study that were not previously identified (Tallent et al., 2007). 80α 

protein gp10 (6.7kDa) of unknown function was found in SaPI1 procapsids, but not in 

80α procapsids. Similarly, 80α gp16 (23.7 kDa) and gp36 (15.0 kDa) correspond to 

proteins of unknown function were found in both 80α and SaPI1 procapsids. The 

amount of these proteins in sucrose purified procapsids, except for gp36 in SaPI1 

procapsids, was low suggesting that these proteins might be loosely associated with 

procapsids. 
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80α TerS (gp40) and TerL (gp41) were present in the SaPI1 CsCl sample, but not in 

sucrose-gradient purified SaPI1 procapsids. We also identified some tail proteins that 

were not previously identified. gp54 and gp55 were present in the 80α CsCl-purified 

protein sample and have putative tail assembly functions (Xu et al., 2004). Also, gp58, 

gp64, gp66 and gp67, not previously detected, also most likely correspond to tail 

proteins.  

SaPI1 proteins identified in this study 

Five additional SaPI1-encoded proteins were found in the CsCl-purified SaPI1 

protein sample that were not detected in SaPI virions. These are SaPI1 gp5, gp6, gp7, 

gp11 and gp18. Of all these proteins, only gp6, with an apparent mass of 8KDa, was 

found in abundance during SDS-PAGE analysis (Fig 26) of SaPI1 sucrose-purified 

procapsids, while gp7, found in CsCl gradient samples, was present in low amounts in 

sucrose purified samples. SaPI1 proteins gp5 and gp7 were not observed on the 

polyacrylamide gel during SDS-PAGE of the CsCl material because they co-migrate 

with the 80α scaffold, but their presence was confirmed by MALDI-TOF mass 

spectrometry. Of all the above mentioned proteins, the presence of gp6 and gp7 in 

procapsid samples was of most significance to this study. The homologs of these two 

proteins in SaPIbov1 had been previously implicated in size determination (Ubeda et al., 

2007; Ubeda et al., 2008). Deletion of either of these genes eliminated the appearance 

of SaPI virion sized DNA, suggesting a defect in small capsid formation. The functions 

of gp5, gp11 and gp18 are unknown, but deletion of the homologous genes from 

SaPIbov1 did not affect SaPI replication or transduction. 
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Density measurements on the SDS-PAGE gels indicate that scaffolding and capsid 

proteins are found in a molar ratio of between 0.33:1 and 0.76:1, corresponding to 137–

315 copies of gp46 and 415 copies of gp47, assuming T = 7 symmetry for the 80α 

capsid and one unique vertex. In SaPI1, the ratio is only 0.2:1, suggesting that other 

factors may substitute for some of the gp46. However, the SaPI1 measurements are 

complicated by the presence of expanded shells that had no scaffold. 

Capsid size determination 

The most important finding in these studies was identification of several SaPI1 

proteins in the SaPI1 procapsids. In a previous study with SaPIbov1, proteins encoded 

by orfs 8 and 9 had been shown, with help of genetic experiments, to be involved in size 

determination (Ubeda et al., 2007). SaPIbov1 gp8 and gp9 are homologs of SaPI1 gp6 

and gp7, respectively. Both gp6 and gp7 were abundant in the CsCl gradient purified 

sample and detected by ESI-TOF mass spectrometry, however only gp6 was present in 

abundance in sucrose purified procapsids suggesting gp7 is loosely attached to 

procapsids. The presence of gp6 and gp7 in procapsids but not in mature SaPI1 

capsids suggests that they are transiently associated with procapsids and most likely 

function as alternate scaffolding proteins in capsid size redirection. 

Comparing SaPI1 size determination proteins with P4 encoded Sid protein  

These experiments clearly established that SaPI1 sized particles are formed 

because of a transient involvement of SaPI1 encoded proteins. 3D-reconstructions of 

cryo-EM further established that the icosahedral symmetry of the SaPI1 particles is T=4 

while that of 80α particles is T=7. The predicted secondary structures of both gp6 and 
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gp7 are α-helical which is characteristic of scaffolds. Thus, there are striking similarities 

between these two systems. So are SaPI1 gp6 and gp7 external scaffolds that use the 

same mechanism as Sid to subvert the T=7 pathway? The cryo-EM studies showed that 

the external surface of SaPI1 procapsids, unlike the surface of P4 procapsids, is smooth 

and similar to that of 80α procapsids. In P4 procapsids, Sid is clearly visible as angular 

density on the procapsid exterior. Thus these data suggest that SaPI1 uses an internal 

scaffold to redirect capsid assembly. 

We took the following approaches to investigate if SaPI1, gp6 and gp7 are 

sufficient and necessary for capsid size redirection. First, in order to confirm that SaPI1 

gp6 and gp7 are necessary for capsid size redirection, as was the case in SaPIbov1, we 

performed loss-of-function studies in SaPI1 by deleting orf6 and orf7 and observing their 

phenotypes by electron microscopy and agarose gel electrophoresis of encapsidated 

DNA. Furthermore, we also wanted to ascertain whether these proteins are sufficient for 

capsid size redirection and rule out the possibility of involvement of other SaPI1 proteins 

by expressing these two proteins alone during an 80α infection. In order to ensure that 

the SaPI1 proteins are cotemporally expressed and have comparable stoichiometry to 

80α head proteins, we constructed transcriptional fusions by inserting SaPI1 orfs 6 and 

7 into the 80α morphogenetic cluster downstream of 80α orf44. The native ribosome 

binding sites of these two genes were retained to ensure correct stoichiometry of the 

expressed proteins. 

Results 

SaPI1 orf6 and orf7 deletion mutants were generated by allelic exchange with 

plasmid pMAD derivatives pPD35 and pPD34, containing flanking regions of their 
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respective genes, in SaPI1-positive 80α lysogenic strain RN10628, generating strains 

ST100 and ST98, respectively. Transcriptional fusions were constructed by inserting 

SaPI1 orf6 and orf7 individually and in conjunction, by allelic exchange, using pMAD 

derivatives pPD36, pPD37 and pPD28 respectively. These were inserted between 80α 

orfs 44 and 45 in the morphogenetic operon at nucleotide position 20694 of an 80α 

prophage in lysogenic strain RN10616 to generate strains ST97, ST99 and ST82, 

respectively. All of these strains were induced by mitomycin C and their lysates were 

examined for capsid morphology by cryo-electron microscopy and for capsid volume by 

agarose gel electrophoresis of the encapsidated DNA. In addition, plaque and 

transduction assays (Novick,1991; Kropinski et al., 2008) of the resultant lysates were 

performed along with their appropriate controls to investigate the role of capsid size 

redirection in interference with 80α propagation. 

SaPI1 gp6 and gp7 are both necessary for formation of small capsids 

Examination by cryo-EM of CsCl banded particles generated by induction of a 

strain carrying the SaPI1 Δorf7 mutant (Fig 27a) revealed a mixture of filled and empty 

particles that were all large. These particles had isometric capsids similar to expanded 

mature 80α capsids in size. About 22% of the shells were empty and presumably had 

lost their DNA during or after purification. Typically, in a lysate of a wt SaPI1-positive 

80α lysogen, about 98% of the particles are small. In contrast, small particles were 

completely absent in these mutant SaPI1 samples suggesting that capsid size 

redirection was completely abolished by deletion of SaPI1 orf7. Cryo-EM analysis of 

CsCl-banded particles formed by the SaPI1 Δorf6 mutant (Fig 27b) yielded intriguing 
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Figure 27. Effects of deleting SaPI1 orf6 or SaPI1 orf7 . 
 

Lysates from SaPI1 Δorf7 80α lysogen (ST98) (a) or SaPI1 Δorf6 80α lysogen (ST100) 

(b) were banded in CsCl prior to visualization by cryo-EM. 
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(a) SaPI1 Δorf7 

 
(b)SaPI1 Δorf6 
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results. There were empty (56%) and full (44%) particles having isometric capsids of 

large and small sizes. Only 51% of small capsids (25%) and about 40% of the large 

capsids (62%) were full. Furthermore, there were about 13% aberrant capsids that did 

not conform to T=4 or T=7 symmetries. These aberrant capsids were mostly prolate 

although some oblate capsids were also observed. Thus deletion of SaPI1 orf6 affected 

capsid size redirection and considerably reduced the number of small capsids. 

Furthermore, fidelity of small capsids was also affected as particles with aberrant 

morphologies not previously seen were observed in these samples. 

Agarose gel electrophoresis of the DNA from the minilysates for both these 

deletion mutants (Fig 28) supported the above observations. Both these mutants 

showed a loss of the faster migrating fragment implying that small capsids were not 

formed. Thus, from the above data it is inferred that both SaPI1 gp6 and gp7 are 

necessary for capsid size redirection and that deletion of either orf results in loss of 

small capsid formation. 

SaPI1 gp6 and gp7 are sufficient for capsid size redirection 

In order to ascertain if SaPI1 gp6 and gp7 are sufficient for small capsid 

formation, we analyzed lysates from strains ST97, ST99 and ST82, which had 

transcriptional fusions of orf6, orf7 and orf6 and 7 inserted into the 80α capsid gene 

cluster. CsCl-banded particles in lysates resulting from induction of these strains were 

examined by cryo-electron microscopy and agarose gel electrophoresis. 
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Figure 28. Agarose gel electrophoresis of encapsidated DNA from SaPI1 deletion 
and insertion strains 
 

 0.7% Agarose gel showing migration of monomer sized DNA obtained from lysates of 

the following insertion and deletion mutants. 

(a) molecular ladder 

(b) 80α::orf 6+7 

(c) 80α::orf 7 

(d) 80α::orf 6 

(e) 80α + SaPI1Δorf7 

(f) 80α + SaPI1Δorf6 

(g) 80α + SaPI1 

(h) 80α 

The SaPI1 monomer sized band is indicated with an arrow 
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Cryo-EM analysis of particles generated by the orf6 insertion mutant (Fig 29a) revealed 

a mixture of particles that were predominantly large, with only about 3% capsids that 

were small. Furthermore, about 80% of the particles were filled with DNA indicating that 

the particles were stable.  

Cryo-EM analysis of CsCl-banded particles produced by the orf 7 insertion 

mutant (Fig 29b) revealed particles with only large capsids. Small capsids were 

completely absent in these samples. However, nearly half of the large capsids were 

empty. As with the orf6 insertion, agarose gel electrophoresis of the encapsidated DNA 

from the orf7 insertion (Fig 28) also did not show smaller SaPI1 sized bands. Thus, 

SaPI1 gp6 or gp7 alone were not sufficient for formation of smaller sized SaPI capsids. 

Since SaPI1 gp6 and gp7 were both required for capsid size redirection we also 

investigated whether both proteins, in conjunction, are sufficient for formation of small 

sized capsids. Cryo-EM analysis of CsCl-banded particles resulting from strains 

carrying an insertion of orfs 6 and 7 in conjunction (Fig 29c) revealed that the particles 

were predominantly of smaller size with T=4 symmetry; only 2% were large. 

Furthermore, agarose gel electrophoresis of the encapsidated DNA (Fig 28) also 

showed the presence of the smaller SaPI sized DNA fragment implying that small 

capsids were being formed. Thus SaPI1 gp6 and gp7 together are sufficient to redirect 

capsid size to form smaller sized capsids. The above experiments allow us to conclude 

that both SaPI1 gp6 and gp7 are necessary and sufficient for forming small capsids. 

  



www.manaraa.com

 

157 
 

Figure 29. EM analysis of 80α mutants carrying insertions of SaPI1 gp6 and/or 
gp7. 
 

Cryo-electron micrographs of CsCl purified particles obtained from lysogenic 80α strains 

that had SaPI1 orf6 (A) orf7 (B) and orf6 and orf7 together (C) inserted in them. 
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A 80α ::SaPI1 orf6    B  80α ::SaPI1 orf7 
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 C  80α ::SaPI1 orf 6+7 
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How does capsid size redirection affect 80α propagation? 

Another notable characteristic in the 80α–SaPI1 relationship is interference with 

the propagation of 80α in the presence of SaPI1. Induction of a SaPI1 positive 80α 

lysogen yields a lysate having a phage titer that is about two orders of magnitude lower 

than a lysate of 80α alone. This reduction in burst size is sufficient to block 80α plaque 

formation on a lawn of SaPI1-positive S. aureus. Similar interference in the P2/P4 

system has been attributed to capsid size redirection (Diana et al., 1978; Nilssen et al., 

1996). In SaPI mobilization, there are several possible factors contributing to helper 

phage interference including altered packaging specificity due to the SaPI1 encoded 

small terminase and formation of small capsids that physically limit encapsidation of a 

full length 80α genome. Earlier studies in our lab demonstrated that deletion of SaPI1 

terS decreased SaPI1 transduction by at least three orders of magnitude but did not 

relieve interference (Ubeda et al., 2009). We expected that small capsid formation 

would interfere with 80α propagation due to the inability to package a complete 80α 

genome. Therefore one of the goals of this study was to find out the correlation between 

capsid size redirection and interference in 80α propagation. We performed growth 

studies with these mutants to determine if blocking small capsid formation would relieve 

the phenomenon of interference or whether small capsid formation per se caused 

interference. 

Results: 

Phage and transduction assays were performed according to methods outlined in  
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Figure 30. Effects of SaPI1 deletion mutants on phage and SaPI1 titers 
 
Plaque assays of 80α and transducing titers of SaPI1 of lysates resulting from SaPI1 

orf6 (ST100) and orf7 (ST98) deletion mutant strains. The mutant strains ST98 and 

ST100 were induced with Mitomycin C and allowed to lyse. Phage and SaPI 

transduction titers were assayed on a sensitive S. aureus indicator strain,RN4220. 

The plaque titers are shown in green and the transducing titers are in blue. Three 

biological replicates were used in this assay. 
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Materials and Methods. Although deletion of SaPI1 orfs 6 or 7 did not alter capsid size, 

we expected them to relieve interference. Surprisingly, however, they did not. The 

phage titers from these deletion strains were still significantly lower than the wt 80α 

indicating that interference was not relieved (Fig 30). Deleting orf6 or 7 did not affect 

SaPI1 transduction frequencies either (Fig 30). The SaPI1 transduction frequency was 

comparable to wild type, suggesting that SaPI1 DNA was efficiently encapsidated in 

large capsids in the absence of small ones and that SaPI1 did not preferentially 

package its DNA in small capsids.  

We also performed plaque assays with the insertion strains (Fig 31). 80α carrying 

an insertion of either SaPI1 orf6 or orf7 alone formed plaques at wild type levels. The 

phage titer obtained by induction of a lysogen carrying an insertion of both of these 

genes dropped sharply to five orders of magnitude less than the wild type. We expected 

the phage titer of this mutant strain to be below detectable limits, similar to the plating of 

80α on SaPI1 positive strains. The relatively high residual phage titer could be 

explained by a high number of spontaneous inactivation mutations occurring in these 

two genes due to repeated selection during each burst (multiplication) cycle. 

Subsequent analysis of some of these plaques is consistent with this interpretation.  

Coexpression of SaPI1 genes 6 and 7 with 80a genes resulted in capsid size 

redirection and also interfered with 80α growth, consistent with our hypothesis. 

However, deletion of either SaPI1 gene 6 or 7 blocked small capsid formation, but did 

not relieve interference with helper phage growth. This result was surprising and it  
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Figure 31. Effects of inserting SaPI1 orf6 and/or orf7 on phage titers 
 

Plaque assays of 80α carrying SaPI1 orf 6 and/or 7 insertion. The 80α lysogenic strains 

containing insertions of SaPI1 orf6 and 7(ST82), SaPI1 orf7 (ST97) and SaPI1 orf6 

(ST99) were induced with Mitomycin C and allowed to lyse 

 Phage titers were assayed on a sensitive S. aureus indicator strain,RN4220. 
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implies that in the absence of capsid size redirection, there are other factors that cause 

interference. DNA packaging specificity due to SaPI1 TerS is one such factor and there 

could be others as well. Thus the interference with helper phage 80α growth is a 

multifactorial event and other genes apart from SaPI1 encoded terS and capsid size 

determination genes are involved. Further studies aimed at identifying these genes and 

understanding their mechanism of involvement in interference would be needed to 

explain this effect.  

This study clearly establishes the role of SaPI1 gp6 and gp7 proteins in capsid 

size redirection and shows that both are required along with 80α head proteins for 

efficient assembly of smaller sized particles. Capsid size redirection is not necessary for 

high frequency transduction of SaPI1 as SaPI1 can be efficiently packaged in large 

capsids as well. It is intriguing why both SaPI1 6 and 7 genes are highly conserved 

among staphylococcal pathogenicity islands. Deletion of these genes in SaPI1 did not 

affect SaPI1 transduction. Perhaps the answer to this puzzle lies in events that take 

place outside of the cell after lysis. 

80α upon release after cell lysis infects its neighboring cells. Like all other 

temperate phages, it undergoes lytic life cycle, most of the times, instead of preferring to 

integrate into the S. aureus chromosome. This results in several subsequent life cycles, 

in the neighboring cells, causing an exponential increase of its progeny and a drastic 

reduction of the neighboring S. aureus population. 

SaPI1 on the other hand lacks the propagation machinery and integrates into the 

S. aureus chromosome upon infection. Thus, in the event of release of phage and SaPI 

from an infected cell and subsequent infection of neighboring cells, the SaPI1 
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population could easily be outnumbered owing to the fact that phages are primed for 

multiplication while SaPIs are not. This could create a situation where the SaPI is 

completely lost and thus would be disadvantageous to SaPI1. SaPI1, by capsid size 

redirection, compels 80a to package incomplete genomes into the smaller particles. 

This molecular “castration” not only ensures that the number of viable phage particles is 

kept in check but also that SaPI1 has enough S. aureus population for its transduction. 

Do SaPI1 genes 6 and 7 supplement or replace scaffold? 

Having established the roles of SaPI proteins gp6 and gp7 in capsid size 

redirection, we also wanted to analyze if these proteins replaced or supplemented the 

function of 80α encoded scaffold. We generated gp46 mutant strains by deleting the 

scaffold gene in an 80α prophage, in SaPI1 positive and SaPI1 negative S. aureus 

strains, to generate ST51 and ST91, respectively. Growth studies were carried out on 

these strains. Furthermore, particles resulting from these strains were also subjected to 

EM analysis. 

Results 

80α encoded scaffold is essential for both 80α and SaPI1 particles 

SaPI1 positive and negative gp46 inactivation mutant strains ST51 and ST91 

were induced with mitomycin C and monitored until lysis. The particles obtained from 

these lysates were subjected to EM examination (Fig 32a). EM analysis of structures 

formed in a SaPI1 negative gp46 mutant strain failed to reveal any capsid-like structures 

of any morphology. The lysate from a SaPI1 positive gp46 mutant strain yielded some 

smaller sized procapsids and aberrant structures, in very low quantity. Furthermore, 
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there was an abundance of free tails and portal complexes in both these samples. 

These lysates were also assayed for viable phage and SaPI transducing particles. Both 

of these mutant strains failed to produce plaque forming units above detectable limits. 

Furthermore, the lysate resulting from the SaPI1-positive gp46 mutant did not yield any 

tetracycline resistant colonies. Thus, deletion of 80α orf46 had a drastic effect on the 

self-assembly process of both small and large capsids. No capsids were assembled at 

all in the absence of gp46 and SaPI1 (Fig 32a) suggesting that gp46 is very important 

for the nucleation event. Furthermore, only a very few small empty procapsids and 

aberrant structures assembled in the presence of SaPI1 (Fig 32b), indicating that gp46 

is not only important for assembly of large but also small capsids. There were a lot of 

free tails and structures resembling portal rings seen in these EMs, indicating that gp46 

is also needed for incorporating the portal proteins into the procapsid. From these data 

it can be deduced that the major capsid protein does not self-assemble even into 

aberrant structures, but requires the help of a scaffold for its assembly. SaPI1, proteins 

seem to allow some assembly of gp47 in the absence of gp46, but the yield of the 

particles is very low indicating that these two proteins supplement the scaffolding 

functions of gp46 rather than complement it. Furthermore, the 80α scaffolding protein 

also functions in incorporation of other minor proteins such as the portal proteins, as 

supported by the observation of free portal rings and free tails and also by our growth 

studies wherein we observed that deletion of orf46 was lethal for 80α as well as SaPI1. 
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Figure 32. Effects of deleting 80α scaffold on phage and SaPI1 particles 
 

Electron micrograph of CsCl purified particles obtained from 80α Δorf46 lysogens 

induced in (a)SaP1 negative (ST91) and (b)SaPI1 positive (ST51).  

Samples for negative stain were prepared by applying phage suspension to glow-

discharged carbon-only grids (Electron Microscopy Sciences), washed 2× with dialysis 

buffer and stained with 1% uranyl acetate. Samples were observed in an FEI Tecnai 

F20 electron microscope operated at 200kV and images were captured on a 4k × 4k 

Gatan Ultrascan CCD camera or on Kodak SO-163 film at magnifications from 38,000× 

to 81,200×. 
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Figure 33. Effects on 80α Δorf46 phage and transducing titers. 
 

Plaque and transduction assays of (a)SaP1 negative (ST91) and (b)SaPI1 positive 

(ST51) 80αΔorf46 lysogenic strains. These strains were induced with Mitomycin C and 

allowed to lyse. Phage titers were assayed on a sensitive S. aureus indicator strain, 

RN4220. The plaque titers are shown in green, and transducing titers are in blue. 
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Chapter 6 

Defining the minimum number of components required for 
capsid assembly 

Introduction 

The studies described thus far identified two SaPI1 proteins, namely SaPI1 gp6 

and gp7, that were transiently associated in procapsids but not found in mature virions 

(Tallent et al., 2007; Poliakov et al., 2008). Furthermore, our genetic and EM studies 

with SaPI1 gp6 and gp7 established their role in size redirection (Chapter 6). We wished 

to further dissect the roles of the different proteins in capsid assembly by examining the 

process with a smaller number of components. In the P2/P4 system, in vivo expression 

studies showed that the P2 capsid protein gpN could assemble by itself into procapsid 

like particles with a triangulation number T=7, though with a low fidelity. Incorporation of 

the P2 scaffold gpO with gpN resulted in increased fidelity of the T=7 procapsid like 

particles. Addition of gpSid to this system now redirected capsid assembly, leading to 

formation of predominantly smaller procapsid like structures with a T=4 symmetry 

(Wang et al., 2000). The effect of gpSid on capsid assembly was powerful enough to 

override the effect of the internal scaffold and redirect procapsid assembly to form 

smaller capsids. This chapter describes a set of experiments in the 80α-SaPI1 system. 

Rationale 

Virus assembly can be studied both in vitro and in vivo and both approaches 

have their own advantages and shortcomings. The in vitro approach relies on 
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expressing and purifying individual components, which are then added to the assembly 

reaction and subjected to thermodynamic and kinetic studies. One serious drawback of 

this approach is that it is difficult to establish an intracellular environment in a test tube 

and for this reason it might be easier to use the in vivo approach to determine the 

minimum subset. Given the success of this approach in the P2/P4 system, we 

undertook in vivo co-expression to determine the minimum subset of structural 

components of an 80α shell. Having determined the minimum components required for 

assembly of bona fide procapsid-like particles, we also wanted to determine how the 

SaPI1 encoded internal scaffolding proteins would interact with this subset and affect 

capsid size.  

Our initial attempts to perform expression studies with 80α gp46 and gp47 using 

the T7 expression system in E. coli generated amorphous monster-like structures that 

were more than 100 nm in size, or sheet-like assemblies, instead of particles with a 

discrete morphology (Fig 4.2c). We initially narrowed this failure to produce procapsid-

like structures to two main possibilities. (a) We observed that gp47 was insoluble, 

suggesting that most probably these proteins were misfolded in E. coli, and (b) there 

was a loss of N-terminal cleavage of both the scaffold and major capsid proteins when 

expressed in E. coli (Chapter 4). In order to address the problem of loss of proteolytic 

cleavage, truncated versions of major capsid and scaffold genes were cloned in tandem 

and expressed in E. coli in our collaborator’s lab. However, the truncated proteins also 

failed to yield discrete procapsid-like particles, but still formed the amorphous structures 

previously observed with the full length proteins. Thus, the failure to form discrete 

procapsid-like particles was attributed to protein misfolding in E. coli. In order to 
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overcome this problem, we turned to a recently developed staphylococcal T7 

expression system (D'Elia et al., 2006; Pereira et al., 2008) to express 80α proteins. 80α 

and SaPI1 proteins were expected to fold correctly in their natural host. We cloned 80α 

structural genes in various combinations onto pG164, a shuttle plasmid vector for the 

staphylococcal T7 expression system, and supplemented them with SaPI1 genes 6 and 

7. Two hours after induction with IPTG, the proteins expressed in cells carrying these 

plasmids were subjected to SDS-PAGE analysis and the lysates were subjected to 

cryo-EM analysis in Dr. Dokland’s lab. 

Results 

Major capsid protein and scaffolding protein are both required for the self-assembly of 

procapsids 

The major capsid protein gp47, on its own, did not assemble into procapsids 

when expressed in S. aureus strain ST70 (Fig. 34a). In addition, its expression level as 

visualized during SDS-PAGE analysis was low (Fig. 35). However, on co-expressing 

scaffolding protein with the major capsid, we observed some self-assembly into 

procapsids. EM analysis of the samples resulting from co-expression of scaffold with 

major capsid protein (Fig. 34b) revealed that about one-third of the total procapsid like 

structures resembled bonafide large (T=7) procapsids, about a third were expanded and 

the rest were aberrant assemblies with some super monster like structures. SDS-PAGE 

analysis showed that gp46 did not express well in this strain which perhaps explains the 

small number of T=7 procapsids and large number of aberrant structures. Co-

expression of proteins from the plasmid containing the entire 80α orf42 to orf47 gene 

cluster generated procapsids with much higher fidelity (Fig 34c), suggesting that capsid 
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assembly was aided by additional proteins. These data suggest that the minimum 

subset required for self-assembly of 80α procapsids consists of scaffold and major 

capsid proteins, and that other proteins encoded by the head gene cluster assist in this 

process but are not absolutely essential. 

SaPI1 gp6 and gp7 redirect capsid assembly 

Having established the minimum subset required for assembling large (T=7) 

procapsids, we added SaPI1 genes 6 and 7 in tandem to the plasmid carrying the 80α 

scaffold and major capsid genes. Expression from this plasmid was induced with IPTG 

and the cells again analyzed after an induction period of 2 hours. SDS-PAGE analysis 

showed bands for gp47, gp46 and gp6 (Fig. 36). gp7 co-migrates with scaffold and 

hence could not be differentiated on the gel. EM analysis showed that small (T=4) 

procapsid like structures were now being assembled along with large (T=7) procapsids 

(Fig 37). There were a lot of aberrant structures as well. These data suggest that 

addition of SaPI1 gp6 and gp7 to the minimum subset of 80α proteins did result in 

capsid size redirection to form smaller procapsid like structures and that the minimum 

subset for formation of smaller procapsid consists of 80α scaffold and major capsid 

proteins supplemented with SaPI1 gp6 and gp7. 

Discussion 

This study strongly suggests that 80α scaffold is very important for assembling 

large and small capsids and that 80α major capsid does not assemble correctly on its 

own. Studies performed with P22 have also shown that scaffold is very important for 

assembling particles of the correct size with high fidelity. Capsid assembly in the 
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Figure 34. Structures formed by coexpression of cloned 80α capsid genes. 
 

Major capsid protein was expressed from (A) ST70, scaffold and major capsid protein 

from (B) ST71 and portal through major capsid in (C) ST72. 

Samples for negative stain were prepared by applying phage suspension to glow-

discharged carbon-only grids (Electron Microscopy Sciences), washed 2× with dialysis 

buffer and stained with 1% uranyl acetate. Samples were observed in an FEI Tecnai 

F20 electron microscope operated at 200kV and images were captured on a 4k × 4k 

Gatan Ultrascan CCD camera or on Kodak SO-163 film at magnifications from 38,000× 

to 81,200×. 
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Figure 35.SDS-PAGE analysis of proteins obtained by coexpressing cloned 80α 
genes 
 

Major capsid protein was expressed in ST66 from a plasmid with a native rbs and ST70 

from a plasmid with engineered rbs, scaffold and major capsid protein from ST71 and 

portal through major capsid in ST72. 

Cells were disrupted by boiling in reducing buffer for 10 minutes and loaded on 12% 

Bis-Tris precast gels (Criterion XT Biorad laboratories) 

Lane  (a) molecular weight marker size in KDa indicated 

 (b) wt 80α virions 

 (c) Plasmid pPD2, expressing major capsid and scaffold in E. coli. 

 (d) Plasmid pPD18, expressing major capsid from its native rbs in S. aureus 

 (e) Plasmid pPD20, expressing major capsid in S. aureus 

 (f) Plasmid pPD21 expressing major capsid and scaffold in S. aureus 

 (g) Plasmid pPD22 expressing portal through major capsid in S. aureus 

 (h) Plasmid pG164 as a negative control 

 

Arrowheads indicate the bands corresponding to portal (in blue), capsid protein (in 

black) and scaffold protein (in red). 
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Figure 36. SDS-PAGE analysis of proteins obtained from coexpression of major 
capsid and scaffold along with SaPI1 6 and 7 genes. 
 
Coexpression of cloned major capsid, scaffold SaPI1 genes 6 and 7(ST118) was done 

by induction by IPTG for 2 hours. Cells were lysed and samples were prepared for SDS-

PAGE analysis 

10% Tris HCl gel was run under denaturing conditions. 
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Figure 37. Structures formed from coexpression of 80α major capsid and scaffold 
along with SaPI1 genes 6 and 7. 
 
Particles were obtained by coexpressing cloned major capsid, scaffold SaPI1 genes 6 

and 7(ST118). These particles were purified on CsCl and subsequently on sucrose 

gradients. 

Cryo-EM was done by standard methods: 3 μL of sample was applied to non-glow-

discharged C-flat holey film (Electron Microscopy Sciences, Hatfield, PA), blotted briefly 

before plunging into liquid ethane, and transferred to a Gatan 626 cryo-sample holder. 

Samples were observed in an FEI Tecnai F20 electron microscope operated at 200 kV, 

and images were captured on Kodak SO-163 film at a magnification of 62,000×. 
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absence of P22 scaffolding protein results in formation of small (T=4) procapsids and a 

lot of spiral structures that cannot form closed procapsid like structures. Similar aberrant 

structures or small (T=4) procapsids were not observed when we expressed 80α gp47 

alone. This failure to observe any kind of assembly may be attributed to the stability of 

the procapsid like structures. Though 80α and P22 major capsid proteins share a HK97 

like fold, P22 has an additional telokine-like domain that has been implicated in 

stabilizing capsids (Parent et al., 2010). However, we also cannot rule out the possibility 

that low expression of gp47 from plasmid pPD20 led to the observed lack of procapsids, 

although we would have expected to observe at least a few, discrete procapsid like 

structures even in this case. It is also possible that the apparent low expression of gp47 

could be attributed to its high turnover in the absence of stable procapsid like structures. 

Further studies are needed to dissect which is the cause and which is the effect. 

However, it still can be safely concluded that the minimum subset of proteins required 

for formation of T=7 procapsid-like structures with a high fidelity consists of scaffold and 

major capsid proteins and that addition of SaPI1 gp6 and gp7 to this subset leads to 

formation of smaller (T=4) procapsids. 
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Chapter 7 

Discussion 
 

This work was designed to study the structural aspects of staphylococcal 

pathogenicity island SaPI1 transducing particles and its inter-relationship with helper 

phage 80α. SaPI1 exploits helper phage 80α functions in a highly efficient and specific 

manner for its own mobilization. The horizontal dissemination of SaPIs is not limited to 

intraspecies transfer, but has recently been shown capable of being intergeneric 

(Maiques et al., 2007). Since staphylococcal PRCIs encode several known virulence 

factors, this transfer has wider implications in both health care and the food industry.  

One striking aspect of SaPI mobilization is the capsid size redirection during the 

helper phage capsid assembly process, producing small sized virions that are large 

enough to package the entire SaPI genome, but not that of the helper phage. At the 

outset, we considered three possible ways by which morphologically distinct SaPI1 

particles could be formed: (1) SaPI1 encodes its own alternative coat proteins; (2) 

phage 80α encoded capsid protein is alternatively processed to form the smaller 

capsids; or (3) capsid assembly is redirected by use of a different SaPI-encoded 

scaffold. Previous studies showed that SaPI virions consisted entirely of helper phage 

encoded proteins and that these proteins were identical (Tallent et al., 2007), ruling out 

the first two possibilities. This argued for involvement of an alternate scaffold in capsid 

size redirection. Since scaffolding proteins are transiently involved in the self-assembly 
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of a procapsid, this hypothesis was consistent with the observations from the earlier 

studies.  

The redirection of capsid size exhibited by SaPI1 is reminiscent of the 

exploitation of helper phage P2 by satellite phage P4 in E. coli, during which P4 directs 

formation of smaller capsids from P2 encoded structural proteins and thus favors its 

own encapsidation. The P4 capsid (T=4) is roughly one-third the volume of P2 capsid 

(T=7), commensurate with its genome size. Size determination of P4 capsids is carried 

out by a P4-encoded protein, Sid. This protein is transiently involved as an external 

scaffold during P4 procapsid assembly and allows only the formation of smaller capsids 

and not the larger ones. The P2-P4 paradigm of capsid size redirection provided an 

initial model on which we based our investigation of capsid size redirection in the 80α-

SaPI1 system.  

These studies have addressed questions related to the structures of helper 

phage capsids and SaPI1 virions, have identified SaPI1 proteins responsible for 

redirecting the capsid assembly process to assemble smaller sized SaPI1 virions, and 

have provided initial framework for understanding the self-assembly process. Below is a 

summary of our findings. 

Role of scaffolding proteins in self-assembly of a procapsid 

Most double stranded phages assemble their icosahedral shells from multiple 

copies of one capsid protein. The first stage in the assembly process is formation of an 

empty shell, known as a procapsid. However, formation of the hollow procapsid shell 

poses a significant challenge that requires anisotropic, directional interactions between 

subunits in space and time. The capsid protein by itself does not ensure correct 
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geometry of the capsid shell, but requires a scaffolding function for timely and proper 

procapsid assembly (Dokland, 1999; Fane et al., 2003). These critical functions, in 

many phages, are performed by a separate dedicated scaffolding protein. Less 

frequently, as is seen in HK97 and T5, scaffold domains are embedded within the 

capsid proteins (Duda et al., 1995a; Effantin et al., 2006; Huet et al., 2010). The rate of 

self-assembly is much slower in the absence of scaffolding proteins. In phage P22, for 

example, it has been shown that the lack of scaffolding protein decreases the rate of 

assembly by about tenfold (Casjens et al., 1974).  

Not only does self-assembly proceed at a slower rate in the absence of scaffold, 

but the number of aberrant structures increases. For example, mutation in the 

scaffolding protein of Φ29 results in assembly of isometric particles instead of prolate 

ones (Aksyuk et al., 2011). Capsid proteins of T4 and phage λ assemble into cylindrical 

structures rather than icosahedral procapsids in the absence of their respective 

scaffolding proteins (Kellenberger,1980; Kellenberger,1990).  

Scaffolding proteins have been shown to serve three important functions in the 

process of self-assembly. First, they facilitate the nucleation of assembly and thereby 

increase the rate of the self-assembly process (Caspar,1980; Erickson et al., 1981). 

Second, they help incorporate other essential proteins such as the portal proteins into 

the procapsid (Earnshaw et al., 1978; Moore et al., 2002; Huffman et al., 2008; Yang et 

al., 2009a; Yang et al., 2009b). Finally, they ensure proper geometry of procapsids by 

suppressing formation of aberrant structures during the self-assembly process (Salunke 

et al., 1989; Thuman-Commike et al., 1998).  
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Scaffolding proteins have been arbitrarily classified into three groups, based on 

their location and levels of complexity. Group 1 includes the icosahedrally ordered 

external scaffolding proteins of phage P4 and ФX174-related phages. Group 2 includes 

the internal scaffolding proteins like those found in phages P22, and λ and in herpes 

virus. Group 3 includes proteins from phages with the multiple internal scaffolding 

proteins, such as those in the T4-like phages (Dokland,1999). 

Structural studies of external scaffolding proteins have been performed for two 

bacteriophages, namely the ssDNA phage ФX174 and E. coli dsDNA satellite phage 

P4. The external scaffolds of both these phages are predominantly α-helical, extended 

proteins that interact with the head proteins and form an external lattice around their 

respective procapsids. The external scaffold protein Sid of phage P4 is discussed here 

in some detail, since it provides the only characterized example of capsid size 

redirection. Phage P2 encodes a major capsid protein (gpN) and an internal scaffolding 

protein (gpO) that normally assemble into a large (T=7) P2 procapsid. The satellite 

phage P4 encoded external scaffolding protein, Sid, overrides the effect of gpO and 

redirects the self-assembly process to form smaller (T=4) procapsids.  

Genetic studies suggest that Sid interacts only with gpN, since P2 mutants 

resistant to the action of Sid, known as sir mutants (Sid responsiveness), have been 

isolated only in gene N (Six et al., 1991). These mutations clustered to the middle of 

gene N, suggesting that either this region of gpN was responsible for gpN-Sid 

interactions or it acted as a “hinge” that provided flexibility to gpN to assume the 

conformation required for the T=4 P4 capsid. In an attempt to dissect the above two 

possibilities, extragenic second site suppressors of sir mutations were isolated (Kim et 
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al., 2001). The mutations in these nms mutants (N mutation sensitive) map to the C-

terminus of Sid and are thought to create stronger Sid-Sid interactions that can 

overcome the effects of the original sir mutations. Structural studies with the Sid protein 

showed that it forms a dodecahedral lattice over the T=4 procapsid (Marvik et al., 

1994b; Marvik et al., 1995; Wang et al., 2000). The outline of the lattice makes twelve 

large pentagons around the five-fold axis of symmetry that is occupied by the gpN 

pentamers. These lattices also bifurcate the 30 gpN hexamers and make trimeric Sid-

Sid-Sid interactions between two gpN hexamers (Wang et al., 2000; Dokland et al., 

2002). Thus the role of gpSid is to physically limit the formation of a large capsid by 

building a cage around it. It is noteworthy that gpO is required for assembly of viable P4 

particles in vivo (Christie et al., 1990) since it is required for the processing of gpN.  

SaPI1 gp6 and gp7 are the capsid size redirecting factors 

In order to identify SaPI proteins that could function as alternate scaffold 

proteins, we analyzed and compared the protein composition of phage 80α and SaPI1 

capsids and procapsids by SDS-PAGE and mass spectrometry. The most significant 

findings from these experiments are (1) the presence of phage 80α encoded scaffold 

gp46 in both 80α and SaPI1 procapsids, but not in their corresponding mature virions, 

and (2) the presence of two SaPI1 proteins, gp6 and gp7, in SaPI1 procapsids but not in 

SaPI1 virions. gp6 and gp7 homologs of SaPIbov1 had earlier been implicated in 

formation of small capsids (Ubeda et al., 2007). SaPI1 gp6 and gp7 are both abundant 

in SaPI1 procapsids concentrated on CsCl gradients, although gp7 appears to be 

greatly diminished in sucrose gradient purified particles, suggesting a loose association. 
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The presence of both these proteins in SaPI1 procapsids strongly suggested that they 

are involved in formation of small capsids.  

SaPI1 gp6 and gp7 are sufficient and necessary for formation of small capsids 

We performed loss-of-function mutation studies in SaPI1 by deleting orf6 and 

orf7 and observed their phenotypes by electron microscopy and by agarose gel 

electrophoresis of encapsidated DNA to confirm that these proteins are necessary for 

capsid size redirection. Furthermore, in order to confirm that these proteins are 

sufficient for capsid size redirection, we also constructed transcriptional fusions by 

inserting SaPI1 orfs 6 and 7 alone and together into an 80α prophage genome. We 

performed growth assays, cryo-EM analysis and Southern blots of the encapsidated 

DNA to assess whether these proteins are necessary and sufficient for capsid size 

redirection. We discovered that both of these proteins are required to redirect capsid 

size, and that no additional SaPI proteins are necessary. 

SaPI1 size redirecting factors supplement 80α scaffold in formation of small capsids 

In order to investigate the role of 80α encoded scaffold in formation of small 

capsids, we knocked out gp46 and observed its phenotype by performing biological 

assays and electron microscopy. Induction of S. aureus strain ST51 [RN4220 SaPI1 

tst::tetM(80α ∆orf46)] and ST91 [RN4220(80α ∆orf46)] failed to produce viable phages 

or SaPI1 transducing particles. Also, electron microscopic examination of particles 

obtained from ST51 revealed just a few aberrant shells and some small procapsids, 

while lysate from ST91 did not show the presence of any kind of procapsid-like 

particles. Thus 80α encoded scaffold is required not only for formation of large capsids 
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but also the small sized SaPI capsids. The abundance of SaPI encoded proteins gp6 

and gp7 in SaPI1 procapsids but not in SaPI1 virions indicated that they might act 

transiently to redirect capsid formation and that they act in conjunction with 80α 

encoded scaffold to form small capsids rather than replacing it.  

80α major capsid and scaffold are N-terminally processed 

Our initial experiments with in vivo expression of head proteins in E. coli revealed 

that the masses of both 80α scaffold and major capsid proteins were different from 

those of virions. SDS-PAGE analysis showed that both scaffold and capsid proteins 

from native procapsids migrated faster than ones overexpressed in E. coli. The faster 

migration rate of scaffold and major capsid proteins from native procapsids indicated 

that these proteins were post-translationally modified. Analysis by electrospray 

ionization (ESI) mass spectroscopy showed that both major capsid and scaffold proteins 

in 80α and SaPI1 procapsids were found to be cleaved at their N-terminus, within the 

consensus sequence KLKxNLQxF*A, where * denotes the cleavage site. The significant 

similarity at the N-terminus of these proteins strongly suggested that the proteins are 

cleaved by the same protease. There was also no difference in the masses of the two 

proteins between 80α and SaPI1, ruling out the possibility of differential processing of 

major capsid in SaPI1 capsids.  

Major capsid and scaffold proteins are cleaved by a host protease 

Cleavage of structural proteins is a common feature among double stranded 

DNA bacteriophages. Bacteriophages P2, T4 and HK97 are examples of double 

stranded bacteriophages that exhibit cleavage of the major capsid protein. Cleavage in 



www.manaraa.com

 

192 
 

these phages occurs after procapsid assembly and is thought to be an important control 

point for the expansion of procapsids(Marvik et al., 1994a; Conway et al., 1995). The 

cleavage in these phages is carried out by a phage protease that is usually located 

immediately upstream of scaffold gene, in the same operon. Sometimes the protease 

function is embedded in the scaffold itself as is the case for phage T4 (van Driel et al., 

1980). Based on these observations from other phages, we hypothesized that 80α 

orf44, which lies immediately upstream of the 80α scaffold gene, could be a putative 

protease. gp44 was also found in 80α and SaPI1 procapsids and mature 80α virions 

indicating that orf44 was a real gene and hence was the most likely candidate for a 

phage encoded protease. In order to test our hypothesis, we conducted SDS-PAGE 

analysis, cryo-electron microscopy and biological assays with an orf44 deletion mutant. 

Our observations strongly suggested that gp44 is not a protease. A search in the 

reference protein database (NCBI) using PSI-BLAST (Position-specific iterated BLAST) 

(Altschul et al., 1997) with the gp44 amino acid sequence as a query showed that this 

protein had homologs in other Staphylococcal Siphoviridae and a slight similarity to 

phage SPP1 gp6 protein. SPP1 gp6 is required for efficient infection of B.subtilis and 

has been demonstrated to play a role in DNA ejection (Vinga et al., 2006). Deletion of 

the gene encoding SPP1 gp6 causes premature DNA ejection and significant loss of 

infectivity. Thus based on all these data, we suggest that gp44 is a “neck” protein 

involved in head-tail connection and/or DNA stability. 

When major capsid protein was expressed in S. aureus and compared to major 

capsid protein from native 80α particles by SDS-PAGE, their migration rates were 

identical. Subsequently, masses of both these proteins were found to be identical by 
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mass spectrometry (Dr Terje Dokland personal communication). These observations 

strongly suggest that a host protease is involved in N-terminal processing of 80α head 

proteins. This is unusual for prohead processing because of its critical role in capsid 

maturation. All phages studied thus far that have prohead processing encode their own 

proteases. Though using a host protease might be a good tactic to reduce the coding 

capacity of its genome, relying on a host for such a critical process could prove 

disastrous for the phage unless the protease is also essential to the host. 

If indeed a host protease is responsible for cleaving major capsid and scaffold 

proteins then it should also have a similar function in S. aureus. In order to find targets 

of this putative protease, we performed a BLAST search against the S. aureus genome 

using the N-terminus of major capsid and scaffold protein sequences as a query. This 

search identified a single protein with sequence similarity at the N-terminus, 

staphylococcal ribosomal protein L27 (NCBI Reference Sequence: YP_500260.1).  

L27 is a component of the ribosomal large (50S) subunit. Genetic experiments in E. coli 

have shown its role in peptidyl transferase activity. L27 proteins from the Gram-positive 

bacteria S. aureus and B. subtilis are homologous to the E. coli L27 except that they 

have an extra sequence at their N-terminus that is similar to the N-terminal sequence of 

the 80α scaffold and major capsid proteins. Furthermore, the active from of E. coli L27 

lacks the formyl methionine and starts with an alanine as would the staphylococcal L27 

if its N-terminal region was cleaved. These observations strongly suggest that 

staphylococcal L27 is N terminally processed between Phe and Ala to yield the active 

form.  
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If the staphylococcal ribosomal protein L27 is cleaved at the N-terminus, then this 

processing must have an important role in the biological process. Microbes have 

evolved to maximize efficiency, and encoding useless regions would go against this 

paradigm. It is common for proteins to have a signal sequence in the N-terminal region 

and this is generally true for proteins that are secreted or targeted to the cellular 

membranes. However, L27 is a cytoplasmic protein and hence neither of the roles for its 

N-terminal region seem significant in its case. Of the several possible roles for the N-

terminus of S. aureus L27, two seem attractive. First, is the N-terminus of S. aureus an 

intramolecular chaperone? Some proteins, such as subtsilin, use their N-terminus as an 

intramolecular chaperone. These proteins have an N-terminal region about 70 to 200 

amino acids long that assists the propetide in folding properly. However, this possibility 

also seems to be unlikely due to the fact that subtsilin-like proteins have an 

autoproteolytic activity while the staphylococcal L27, based on our observations with 

major capsid and scaffold proteins, would not have such an activity. Furthermore, the N-

terminal region is too short and has a propensity to form only a single α-helix that might 

not be sufficient to assist folding of the remaining primary structure. Second, does the 

N-terminus have a role in the ribosomal protein autoregulatory network? Ribosomal 

protein synthesis is translationally regulated so that the ribosomal proteins are 

synthesized in stoichiometric proportions. This control is important if the bacteria has to 

cope with varying environmental conditions. Translational control by feedback-

regulation of ribosomal protein synthesis has been extensively studied in E. coli. 

However, these mechanisms remain poorly understood in Gram positive bacteria. It is 

possible that the truncated N-terminal peptide of the staphylococcal L27 has some role 
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in this regulatory network. High levels of these cleaved peptides or accumulation of the 

uncleaved form could provide some level of feedback and signal the cells to stop 

ribosomal protein synthesis. Perhaps, the phage could be possibly exploiting this 

signaling mechanism so that while it is multiplying in the cell, resources are not diverted 

towards the host functions. Clearly more studies would be required in identifying the role 

of these cleaved fragments. 

The morphology of helper phage particles is distinct from SaPI1 particles 

Our cryo-electron microscopic studies of helper phage 80α and SaPI1 particles 

show that both these particles have a 190 nm long flexuous tail capped with a baseplate 

containing six tail fibers. The phage capsids are 63 nm in diameter and are isometric 

and icosahedral in shape. The SaPI1 capsids are also isometric and icosahedral in 

shape but only 46 nm in diameter. Three dimensional (3-D) reconstruction with cryo-EM 

images of phage 80α and SaPI1 capsids and procapsids reveals that they have an 

icosahedral symmetry corresponding to triangulation numbers T=7l and T=4, 

respectively. 

Furthermore, the HK97-like capsid fold that has been found in all Caudovirales 

studied thus far, and even in herpes virus (Bamford et al., 2005; Johnson et al., 2007) is 

also seen in the 80α gp47 capsid protein. Like other capsid proteins of T=7 phages, 80α 

major capsid protein exists in 7 conformational states with minor differences in their 

tertiary structure. Though 80α capsid protein has a HK97-like fold, there are major 

differences between gp47 and HK97 gp5 throughout the structure. The biggest 

difference is in the elongated P loop of gp47, which was found to form a trifoliate β 

hairpin at the threefold inter-capsomer contacts in the 80α icosahedral shell (Spilman et 
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al., 2011). This trifoliate density is reflected in a clustering of strong density in the 

reconstruction, suggesting that this region is critical for capsid stability. This region has 

been found to be critical in providing capsid stability in phage λ and P22 as well. For 

example, in phage λ there is an additional decoration protein (gpD) at this location that 

strengthens the three fold intercapsomer interaction (Lander et al., 2008). P22 has an 

extended P-loop similar to that of gp47 and an additional telokine domain that is 

involved in capsid stability (Parent et al., 2010). In HK97, residues involved in cross 

linking are located in this region (Wikoff et al., 2000). The other important observation is 

the presence of an α helix in the procapsid that is not found in mature capsid. This 

suggests that this arm is involved in the maturation process and possibly interacts with 

the scaffold protein (Spilman et al., 2011).  

The mechanism of conformational change during maturation in 80a major capsid 

protein differs from that of HK97. Capsid maturation in HK97 gp5 is caused by a rotation 

of the A domain by 39° relative to the P domain. The most striking conformational 

change in the 80α capsid protein during capsid maturation occurs in the spine helix 

(α3), due to proline at 132 that produces a kink in the helix. The ψ angle of Pro132 

switches from + 135° to – 45° during the maturation of the procapsid. This change in the 

ψ angle causes a rotation of the N-terminal half of α3 relative to the rest of the helix and 

this change is propagated through α2 to the whole P domain, including the P loop. 

However, the position of the A domain relative to the P domain remains essentially the 

same. Thus in spite of having similar tertiary folds, these capsid proteins employ 

different mechanisms to achieve the final stable conformation pointing to the versatility 

of  the maturation process. Further studies need to be directed at understanding how 
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80α gp47 can assume conformations of a T=4 state. These studies would help in 

understanding the plasticity of 80α gp47 and how it can form stable structures that have 

an altogether different triangulation number. 

SaPI1 procapsid assembly is mediated by an internal scaffold 

The phage 80α and SaPI1 procapsids, similar to the capsid precursors of other 

Caudovirales, are smaller and more rounded than their mature capsids, These 

procapsids have icosahedral symmetries corresponding to their mature capsids. 

However, their walls are thicker than of mature capsid with hexamers and pentamers 

that protrude more distinctly than in mature capsids. The capsid protein subunits are 

more closely packed than in mature capsids.  

Most importantly, the external surface of SaPI1 procapsids was as smooth as 

that of 80α procapsids and lacked any additional features that could be attributed to a 

Sid-like external scaffold on the exterior shell of the SaPI1 procapsid, similar to those 

seen on P4 procapsids. The interior of SaPI1 procapsids, however, unlike the 80α 

procapsids, has 120 nm long finger-like, well defined densities that protrude from the 

inner surface to the center of the procapsid. These observations marked a major 

deviation from our adopted P2-P4 model because it suggested that the SaPI1 procapsid 

assembly is not mediated by an external scaffold, as in P4 procapsids, but is redirected 

by alternative internal scaffolds. Indeed both gp6 and gp7 have propensity to form α-

helical structures, which are a hallmark of internal scaffold proteins. Interestingly, SaPI1 

gp6 and 80α scaffold protein share a sequence similarity in the C-terminal region (Fig 

38). The C-terminus has been found to be important in other phages as well. Recent  
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Figure 38. Sequence alignment of C-terminal sequences of 80α scaffold and 
SaPI1 gp6  
 

Shown is a sequence alignment of the C-terminal sequence of 80α scaffold and SaPI1 
gp6 

The alignment was performed using an online multiple sequence alignment program: 
Praline, IBIVU Vrije Universiteit Amsterdam 
 

The conservation scoring is performed by PRALINE. The scoring scheme works from 0 
for the least conserved alignment position, up to 10 for the most conserved alignment 
position. 
The color assignments are: 

Unconserved 0 1 2 3 4 5 6 7 8 9 10 Conserved 
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studies with the P22 scaffold have shown that the interaction of the P22 encoded 

scaffold with its coat protein occurs through the C-terminus (Chen et al., 2011). Most 

80α rescue mutants obtained from the plaques of 80α insertion gp6 and gp7 mutant 

map to the C-terminal region of SaPI1 orf6 (personal communication Dr. Gail E. 

Christie). These mutations suggest that the C-terminal region of gp6 is very critical to 

capsid size redirection and since there is remarkable similarity between the C-termini of 

80α scaffold and SaPI1 gp6, both these proteins are likely interacting with the capsid 

subunits through this region. 

The role of SaPI1 gp7 in capsid size redirection is not clear at present. This 

protein along with gp6 is clearly required for formation of smaller sized capsids as 

suggested by our experiments. Interestingly, in our experiments with insertion and 

deletion of SaPI1 size redirection factors, when gp7 was present alone with 80α 

morphogenetic proteins, a few smaller capsids were also produced. Experiments with 

P22, in which the levels of scaffold were modulated also produced a few smaller 

capsids along with the larger ones (Thuman-Commike et al 1998). Possibly gp7 

interacts with 80α scaffold and thereby makes its unavailable for capsid assembly. This 

results in capsid assembly with lower fidelity and yields large and small capsids. When 

gp6 is also present in this system, it does not face any competition from 80α scaffold 

and can interact with the 80α capsid protein to predominantly produce small capsids. 

Further experiments to establish the role of SaPI1 gp7 are required. 

The intriguing phenomenon of interference 
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The 80α–SaPI1 relationship causes interference with the propagation of 80α in 

presence of SaPI1. This interference is so drastic that the 80α burst size is reduced by 

about two orders of magnitude. Two possible explanations for this phenomenon of 

interference are: altered packaging specificity due to the SaPI1 encoded small 

terminase, and formation of small capsids that physically limit encapsidation of a full 

length 80α genome. Earlier studies in our lab demonstrated that deletion of SaPI1 terS 

decreased SaPI1 transduction by at least three orders of magnitude, but did not relieve 

interference in such mutants. However, formation of small capsids would still be normal 

and might mask an effect of packaging redirection. We expected that small capsid 

formation would interfere with 80α propagation, due to the inability to package a 

complete 80α genome. This was indeed the case when SaPI1 genes 6 and 7 were 

inserted into the 80α capsid gene cluster. 

Surprisingly, however, deleting orf6 or 7 did not relieve this interference even 

though capsids were now large. These results suggest that the interference of helper 

phage 80α growth is a multifactorial event and other genes, such SaPI1 encoded terS in 

combination with capsid size determination genes, are involved. Further studies aimed 

at deleting these genes in various combinations and identification of putative 

involvement of other SaPI1 genes would be needed to explain this effect. 

Based on this study, the current model of capsid size redirection (Fig 39) in the 

80α-SaPI1 system is follows: capsid assembly is initiated with multiple copies of the 

major capsid protein to form a procapsid. 80α encoded scaffold is needed during the 

self-assembly to yield 80α sized procapsids. The portal complex, which is important for  
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Figure 39. Current model of capsid size redirection 
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providing a route for the entry and exit is also incorporated during this stage as is the 

minor capsid protein, which is possibly a neck protein present in low amounts. This 

transient intermediate undergoes morphological transformation with the removal of 

scaffold and DNA packaging to yield a mature 80α capsid. However, in the presence of 

SaPI1 encoded gp6 and gp7 capsid assembly is redirected to form smaller sized 

procapsids. gp6 supplements the role of 80α scaffold as an internal scaffold, possibly by 

interacting through its C-terminus with the major capsid protein. The role of gp7 is not 

clear at present and we postulate that it competitively inhibits association of 80α scaffold 

with major capsid proteins. These small procapsids mature with the release of gp6, gp7 

and 80α scaffold to form SaPI1 capsids. 
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